Forest canopies help determine natural fertilization rates

May 29, 2008

In this week’s issue of Science, a team of researchers from the United States and Sweden report on a newly identified factor that controls the natural input of new nitrogen into boreal forest ecosystems. Nitrogen is the primary nutrient that dictates productivity (and thus carbon consumption) in boreal forests.

In pristine boreal ecosystems, most new nitrogen enters the forest through cyanobacteria living on the shoots of feather mosses, which grows in dense cushions on the forest floor. These bacteria convert nitrogen from the atmosphere to a form that can be used by other living organisms, a process referred to as “nitrogen-fixation.” The researchers showed that this natural fertilization process appears to be partially controlled by trees and shrubs that sit above the feather mosses.

In the summer of 2006, the researchers placed small tubes, called resin lysimeters, in the moss layer to catch nitrogen deposited on the feather moss carpets from the above canopy and then monitored nitrogen fixation rates in the mosses. The studies revealed that when high levels of nitrogen were deposited on the moss cushion from above, a condition typical of young forests, nitrogen fixation was extremely low. In older, low-productivity forests, very little nitrogen was deposited on the moss cushion, resulting in extremely high nitrogen fixation rates.

Nitrogen fixation is an energy demanding process. Thus, when mosses are exposed to high concentrations of bioavailable nitrogen, the cyanobacteria will consume this resident nitrogen rather than expending energy on fixing new nitrogen. Thus the nitrogen content of canopy throughfall acts as a regulator of newly fixed nitrogen into these boreal forests.

For this same reason, elevated nitrogen deposition from pollution likely reduces moss nitrogen fixation rates. The moss would initially buffer the forest against the effect of nitrogen added as pollution or fertilizer; however, chronic elevated nitrogen inputs would ultimately eliminate this natural source of forest fertility.

The feather moss-cyanobacterial association provides a unique model system in which to study nitrogen feedback mechanisms. The cyanobacteria reside on the leaves, thus the nitrogen status of the canopy throughfall directly influences nitrogen fixation in the feather mosses. This direct expression of a nutrient feedback mechanism could not be detected in other nitrogen fixing plant species, such as legumes, that house their nitrogen fixing bacteria below ground and where soils and decomposing litter intercept and modify the nitrogen from throughfall before it reaches the bacteria.

These findings are important from a global standpoint, because feather mosses (and associated cyanobacteria) are the primary source of biologically fixed nitrogen in the boreal forest biome. The dominating feathermoss Pleurozium schreberi is also found in arctic and temperate biomes and thus may be the widest distributed individual nitrogen-fixing plant species on Earth. Understanding feed back mechanisms among dominating organisms that regulate fundamental ecosystem processes are integral to our ability to predict long term outcomes of global carbon dynamics.

Source: The Wilderness Society

Explore further: Image: Grand Canyon geology lessons on view

add to favorites email to friend print save as pdf

Related Stories

Big clue to future climate change in small plants

May 19, 2011

Yarrow, it's called, this flowering plant also known as "little feather" for the shape of its leaves. Prized as a garden plant that repels unwanted insects while attracting beneficial ones, it also improves ...

Recommended for you

Clean air: Fewer sources for self-cleaning

4 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

4 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

11 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

12 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...