The Rett gene -- a rogue activator

May 29, 2008

In 1999, when Dr. Huda Zoghbi and her Baylor College of Medicine colleagues identified a mutation of the gene MeCP2 as the culprit in Rett syndrome, a neurodevelopmental disorder, the discovery was only the prelude to understanding a symphony of neurological missteps.

Unraveling the story of MeCP2 demonstrates the finicky nature of neurons that work best when the recipe for the proteins affecting them is followed exactly. Zoghbi and her collaborators describe the role MeCP2 plays in the brain in a report that appears in the current issue of the journal Science.

“Whether you lose the protein or gain too much, the symptoms in the brain overlap quite a bit,” said Zoghbi, who is a BCM professor of pediatrics, neurology, neuroscience, molecular and human genetics and a Howard Hughes Medical Institute investigator. “The brain is very sensitive to its physiological equilibrium.”

Yet the brain or neurons in it can demonstrate a problem with only a limited range of symptoms – autism, seizures or mental retardation.

“The symptoms are those of an unhappy neuron,” said Zoghbi. Yet as the MeCP2 studies show, these symptoms can have different causes. That fact may mean that what outwardly appears to be the same disease could have very different beginnings and require wholly different treatments.

Zoghbi and her colleagues found that MeCP2 is a key regulator that can turn on and off genes that govern activities in the neurons of the hypothalamus. While MeCP2 can turn off a gene, it is more likely to turn it on.

As infants, girls with Rett syndrome seem normal for at least six months. Between the ages of 6 and 18 months, however, their development stops and they begin to regress, losing the ability to talk. Then they begin to have problems walking and keeping their balance and develop typical hand-wringing behavior. Many of their symptoms mirror those of autism. Zoghbi’s laboratory was the first to identify a mutation in the MeCP2 gene that results in too little of this protein, causing girls to develop Rett. Boys who suffer from a disorder linked to an excess of MeCP2 have impaired motor function, seizures and mental retardation with autism-like behavior.

In trying to find out how the alterations in MeCP2 affect the brain, the scientists began their studies in the hypothalamus because symptoms of Rett syndrome such as anxiety, sleep disturbance and slowed growth can all be attributed to problems in that part of the brain. Previous studies of the whole brain proved inconclusive, and by targeting a very specific area of the brain, Zoghbi and her collaborators hoped to zero in on the problem.

“Loss of function of the MeCP2 gene causes Rett syndrome,” said Maria Chahrour, a BCM graduate student and first author of the report. Doubling or tripling MeCP2 levels causes other neurological disorders. To better understand the protein, the scientists decided to study mice that either lacked MeCP2 or had too much of it.

They dissected the hypothalamus in both kinds of mice and looked at changes in the genes compared to the same genes in normal mice.

“There are thousands of genes changed by MeCP2,” said Chahrour. In both the mice who had no MeCP2 and those who had too much of the dysfunctional gene, they found changes in expression of thousands of genes. Surprisingly, they found that in at least 85 percent of the genes, MeCP2 turned the gene on. In fact, they found that it associates with CREB1, another gene tasked with turning on genes.

Interestingly, although the two diseases share many features, having no protein versus having too much caused opposite effects on gene expression, suggesting again that “the symptoms are those of an unhappy neuron,” said Zoghbi. Yet as the MeCP2 studies show, these symptoms can have different causes. That fact may mean that what outwardly appears to be the same disease could have very different beginnings and require wholly different treatments.

“Because MeCP2 regulates thousands of genes, it does not make sense to target each of them individually in designing treatments,” Chahrour said. “We are going to have to find a therapeutic strategy that can bypass MeCP2 and restore the normal order in the brain,” she said.

Source: Baylor College of Medicine

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Clinical trial for Rett syndrome launched

Dec 16, 2010

Researchers at Children's Hospital Boston have begun a randomized, placebo-controlled trial to test a potential drug treatment for Rett syndrome, the leading known genetic cause of autism in girls. The drug, mecasermin, a ...

Rett syndrome mobilizes jumping genes in the brain

Nov 17, 2010

With few exceptions, jumping genes-restless bits of DNA that can move freely about the genome-are forced to stay put. In patients with Rett syndrome, however, a mutation in the MeCP2 gene mobilizes so-called ...

Researchers 'grow Rett syndrome' in a Petri dish

Nov 15, 2010

A groundbreaking study published Friday in the leading scientific journal, Cell, revealed that a team of investigators had successfully generated nerve cells using skin cells from four individuals with Rett syndrome. The st ...

Modeling autism in a dish

Nov 11, 2010

A collaborative effort between researchers at the Salk Institute for Biological Studies and the University of California, San Diego, successfully used human induced pluripotent stem (iPS) cells derived from ...

Recommended for you

Low tolerance for pain? The reason may be in your genes

21 minutes ago

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

User comments : 0

More news stories

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.