MIT studies robotic training for astronauts

May 29, 2008
MIT studies robotic training for astronauts
An aeronautics and astronautics project led by MIT researcher Chuck Oman aims to provide better training systems for astronauts to learn how to use robotic arms in space. At left, Joseph Silverman, a sophomore in mechanical engineering, tries his hand with the joysticks that control the robotic arm. At right is graduate student Zakiya Tomlinson, who is running the experiment. Photo / Donna Coveney

The space shuttle's 45-foot robotic arm may look simple and automatic as it gracefully lifts a multi-ton satellite from the cargo bay and lets it drift off into space. Far from it.

Controlling the spindly arm is a delicate process of manipulating multi-axis joysticks with both hands simultaneously - a feat that makes rubbing your stomach while patting your head seem like, well, child's play.

For years, NASA trainers have given astronauts a series of tests before teaching them to control the multi-jointed arm - an enhanced version of which was attached to the International Space Station during an April shuttle mission. But it turns out they've never checked to see how those test scores relate to the training's outcome.

MIT faculty and graduate students have started to remedy that, by doing a systematic evaluation of the effectiveness of the tests in predicting performance. As they continue a four-year project funded by NASA's National Space Biomedical Research Institute, they will see whether other tests could do better.

Andrew Liu, a research scientist in MIT's Man Vehicle Laboratory, has been leading the project, and began by comparing records of test results and actual performance from 40 astronauts, provided by Johnson Space Center and the Astronaut Office of NASA. Zakiya Tomlinson, a graduate student in the aeronautics and astronautics department, has been running simulation training tests here under the supervision of Liu and Charles Oman, director of the Man Vehicle Laboratory.

Liu presented the first report on the research on May 13 at the Aerospace Medical Association meeting in Boston. The results show “they're not good enough for decisions affecting their career path, but just for things like adjusting schedules,” says Tomlinson. “The tests might be suited for selecting training methods, like how many sessions they might need.”

Oman explains that “a lot more has been learned in recent years, about the psychological and physical sides of spatial intelligence. People think differently” about such tasks as mentally rotating a complex shape, but NASA's training has not yet adapted in light of new findings.

In NASA's astronaut training, as well as in actual operation of the robot arm in space, astronauts work in pairs with one operating the controls and another observing. In the next round of MIT tests, the training will simulate the role of the observer, Tomlinson explains.

This might help to determine how much of the ability is related to visual skills in spatial orientation, and how much has to do with manual dexterity in operating the controls. With the “observer” training, manual dexterity no longer makes a difference.

Eventually, the research might also lead to better ways of designing the actual control systems and displays to make the process easier and more intuitive to learn and to use, Tomlinson says.

As part of the research, Tomlinson and other team members spent time in Houston working with the actual system used for astronaut training. After she earns her masters degree, “I would love to go back and actually become a trainer,” she says.

Source: MIT

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Politics no problem, say US and Russian spacefarers

Dec 18, 2014

US-Russian ties may have returned to Cold War levels, but an astronaut and a cosmonaut gearing up for the longest flight on the International Space Station said Thursday politics would not disrupt their work ...

FOXSI to observe X-rays from Sun

Dec 08, 2014

An enormous spectrum of light streams from the sun. We're most familiar with the conventional visible white light we see with our eyes from Earth, but that's just a fraction of what our closest star emits. ...

How can we search for life on icy moons such as Europa?

Nov 24, 2014

Our solar system is host to a wealth of icy worlds that may have water beneath the surface. The Cassini spacecraft recently uncovered evidence of a possible ocean under the surface of Saturn's moon, Mimas.

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.