New technique allows targeted inactivation of genes in research model

May 27, 2008

Researchers at the University of Massachusetts Medical School (UMMS) report today on a new technique that improves the ability of scientists to target individual genes for inactivation—a technique with broad potential implications for both basic science research and human disease.

Two scientific teams at UMMS, one led by Scot A. Wolfe, PhD, an assistant professor in the Program in Gene Function & Expression and the Department of Biochemistry & Molecular Pharmacology, and the other by Nathan D. Lawson, PhD, an associate professor in the Program in Gene Function and Expression and the Program in Molecular Medicine, working with a small fish—the zebrafish—commonly used as a model organism in biomedical research, developed a method to create and deliver a tailor-made “restriction enzyme” that inactivates a specific gene in a zebrafish embryo.

The paper, “Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases” appears as an Advance Online Publication of the journal Nature Biotechnology (25 May, 2008; dx.doi.org/10.1038/nbt1398 ), and was supported by grants from the National Heart, Lung and Blood Institute and the National Institute of General Medical Sciences.

“The best way to figure out what a gene does in an organism is to replace it with a non-functional version, breed the individual, and then look at the offspring to see what’s wrong with them,” said Laurie Tompkins, Ph.D., who oversees genetic mechanisms grants at the National Institute of General Medical Sciences, “The problem is that it’s hard to swap in non-functional genes that are inherited by the offspring. These investigators have devised a way to do this, which will enable many scientists to answer questions that were previously out of reach.”

“We believe that this work will fundamentally change how researchers make knockouts—research organisms in which one or more genes have been genetically engineered to be turned off—in many model organisms,” said Dr. Wolfe. “In this paper, we demonstrate the feasibility of this approach for gene inactivation using the zebrafish, but we believe that this technology should be applicable to other vertebrate and non-vertebrate systems with exciting implications for the development of new models for the study of human disease.”

The collaboration between the Lawson and Wolfe laboratories merges the strengths of two different research programs to achieve important advances at the interface of their interests: the Wolfe laboratory’s focus on understanding and engineering protein-DNA recognition in zinc finger proteins and the Lawson laboratory’s interest in developing new technologies that facilitate biological studies in zebrafish to better understand development and disease.

“The zebrafish has really become quite established as a model organism in the past several years,” said Dr. Lawson. “I began using the zebrafish model to study angiogenesis because of its external development and transparent embryos – we can actually watch blood vessels as they grow in the zebrafish embryo. This allows us to gain novel insights into this process that are not easy to make in mouse models. However, we had not previously been able to directly knock out a gene of interest, an approach available in the mouse. The work we have done with the Wolfe lab will open up completely new avenues for our own research and will further strengthen the use of the zebrafish model. More significantly, this technique will now allow us to make zebrafish models that may provide insight into the progression of human vascular disease.”

Source: University of Massachusetts Medical School

Explore further: Nature offers video of 10 cutest animals of 2014

add to favorites email to friend print save as pdf

Related Stories

People finding their 'waze' to once-hidden streets

10 hours ago

When the people whose houses hug the narrow warren of streets paralleling the busiest urban freeway in America began to see bumper-to-bumper traffic crawling by their homes a year or so ago, they were baffled.

Identity theft victims face months of hassle

11 hours ago

As soon as Mark Kim found out his personal information was compromised in a data breach at Target last year, the 36-year-old tech worker signed up for the retailer's free credit monitoring offer so he would ...

Observers slam 'lackluster' Lima climate deal

11 hours ago

A carbon-curbing deal struck in Lima on Sunday was a watered-down compromise where national intransigence threatened the goal of a pact to save Earth's climate system, green groups said.

Your info has been hacked. Now what do you do?

11 hours ago

Criminals stole personal information from tens of millions of Americans in data breaches this past year. Of those affected, one in three may become victims of identity theft, according to research firm Javelin. ...

New Bond script stolen in Sony hack

11 hours ago

An "early version" of the screenplay for the new James Bond film was the latest victim of a massive hacking attack on Sony Pictures Entertainment, its producers said in a statement on their website Sunday.

Ag-tech could change how the world eats

16 hours ago

Investors and entrepreneurs behind some of the world's newest industries have started to put their money and tech talents into farming - the world's oldest industry - with an audacious agenda: to make sure there is enough ...

Recommended for you

Nature offers video of 10 cutest animals of 2014

14 minutes ago

(Phys.org)—The journal Nature has released a video that ventures a bit from its traditional strictly-science approach to technical journalism—it's all about the cutest animal stories of the past year ( ...

Stranded pilot whale rescued in Cape Verde

58 minutes ago

The archipelago nation of Cape Verde is widely recognised as a marine biodiversity hotspot, not least because of the abundance of marine mammals found in its waters.

Protection of the mouse gut by mucus depends on microbes

59 minutes ago

The quality of the colon mucus in mice depends on the composition of gut microbiota, reports a Swedish-Norwegian team of researchers from the University of Gothenburg and the Norwegian University of Life Sciences in Oslo. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.