Failed HIV Drug Gets Second Chance with Addition of Gold Nanoparticles

May 23, 2008

Researchers at North Carolina State University have discovered that adding tiny bits of gold to a failed HIV drug rekindle the drug's ability to stop the virus from invading the body's immune system.

The addition of gold nanoparticles to a modified version of a drug designed in the 1990s to combat HIV - but discarded due to its harmful side effects - creates a compound that prevents the virus from gaining a cellular foothold, say Dr. Christian Melander, assistant professor of chemistry at NC State, and doctoral student T. Eric Ballard.

Their findings appear online in the Journal of the American Chemical Society.

The drug, a compound known as TAK-779, was originally found to bind to a specific location on human T-cells, which blocks the HIV virus' entry to the body's immune system. Unfortunately, the portion of the drug's molecule that made binding possible had unpleasant side effects. When that portion of the molecule - an ammonium salt - was removed, the drug lost its binding ability.

That's when the researchers turned to gold as the answer. The element is non-reactive in the human body, and would be the perfect "scaffold" to attach molecules of the drug to in the absence of the ammonium salt, holding the drug molecules together and concentrating their effect.

"The idea is that by attaching these individual molecules of the drug with a weak binding ability to the gold nanoparticle, you can magnify their ability to bind," Melander says.

The researchers' theory proved correct. They started with a modified version of TAK-779, which didn't include the harmful ammonium salt. After testing, they found that attaching 12 molecules of the modified drug (SDC-1721) to one nanoparticle of gold restored the drug's ability to prevent HIV infection in primary cultured patient cells. When only one molecule of the drug was attached to the gold nanoparticle, the compound was unable to prevent HIV infection, indicating that the multivalency of the drug was important for its activity.

"We've discovered a non-harmful way to improve the strength and efficacy of an important drug," Melander says. "There's no reason to think that this same process can't be used with similar effect on other existing drugs."

Source: North Carolina State University

Explore further: Cut flowers last longer with silver nanotechnology

add to favorites email to friend print save as pdf

Related Stories

New technology for bioseparation

Sep 17, 2013

Separating target molecules in biological samples is a critical part of diagnosing and detecting diseases. Usually the target and probe molecules are mixed and then separated in batch processes that require ...

Detecting disease with a smartphone accessory

Jun 04, 2013

As antiretroviral drugs that treat HIV have become more commonplace, the incidence of Kaposi's sarcoma, a type of cancer linked to AIDS, has decreased in the United States. The disease, however, remains prevalent ...

Microsponges from seaweed may save lives (w/ Video)

Feb 09, 2011

(PhysOrg.com) -- Microsponges derived from seaweed may help diagnose heart disease, cancers, HIV and other diseases quickly and at far lower cost than current clinical methods. The microsponges are an essential ...

Recommended for you

Cut flowers last longer with silver nanotechnology

3 hours ago

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Attack Ebola on a nanoscale

Aug 15, 2014

(Phys.org) —The Ebola virus outbreak in West Africa has claimed more than 900 lives since February and has infected thousands more. Countries such as Nigeria and Liberia have declared health emergencies, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

tkjtkj
not rated yet May 24, 2008
BUT: ""We've discovered a non-harmful way to improve the strength and efficacy of an important drug," Melander says. " is both
untrue, and very poor science!!
This was done in cell culture!! How
on earth does one translate that into
'non-harmful' ?????

nilbud
1 / 5 (1) May 26, 2008
Screw research, just watch SouthPark.