Enzyme for ubiquitin-dependent protein degradation linked to cellular senescence

May 22, 2008

A new study, published by Cell Press in the May 23rd issue of the journal Molecular Cell, identifies a pivotal role for the CUL7 E3 ubiquitin ligase in growth control. The research makes an exciting new connection between the regulation of protein degradation and the initiation of cellular senescence.

CUL7 E3 is an E3 ubiquitin ligase that plays a critical role in mediating selective degradation of target proteins and, therefore, has a substantial impact on numerous biological processes. Recent genetic research has linked the absence of CUL7 with growth retardation. Dr. Zhen-Qiang Pan from The Mount Sinai School of Medicine and colleagues designed a series of studies to further investigate mechanisms that underlie CUL7-mediated growth regulation.

The researchers found that the CUL7 E3 ligase targeted the insulin receptor substrate 1 (IRS-1) for ubiquitin-mediated degradation and that, conversely, IRS-1 accumulated in CUL7-deficient cells. IRS-1 is a key mediator of the insulin/insulin-like growth factor 1-signaling system and plays a critical role in organismal growth and aging. Further, CUL7-mediated IRS-1 degradation required activity of mammalian target of rapamycin (mTOR), a master regulator of cell growth.

Interestingly, CUL7-deficient cells exhibited multiple biochemical and morphological characteristics associated with senescent cells, specifically with oncogene-induced senescence. Oncogene-induced senescence is an antiproliferative program that is initiated by tumor suppressors in response to oncogenic activation of hyperproliferation.

“Our working hypothesis is that aberrant accumulation of IRS-1, resulting from inactivation of the CUL7 E3, is an oncogenic stimulus that triggers cellular senescence, presumably through sustained MAPK activation and/or increased Akt signaling, both of which were previously shown to induce senescence,” explains Dr. Pan. “These results also raise the possibility that senescence contributes to the pathogenesis of growth retardation observed in patients with disorders linked to CUL7 mutations, such as Yakuts dwarfism syndromes and the 3-M syndrome.”

Source: Cell Press

Explore further: Lifeline extended for critically endangered porpoise

add to favorites email to friend print save as pdf

Related Stories

Cats put sight over smell in finding food

13 minutes ago

Cats may prefer to use their eyes rather than follow their nose when it comes to finding the location of food, according to new research by leading animal behaviourists.

Recommended for you

Activating genes on demand

11 hours ago

When it comes to gene expression - the process by which our DNA provides the recipe used to direct the synthesis of proteins and other molecules that we need for development and survival - scientists have ...

Metabolic path to improved biofuel production

11 hours ago

Researchers with the Energy Biosciences Institute (EBI), a partnership that includes the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, have found a way ...

Deadly frog fungus dates back to 1880s, studies find

13 hours ago

A deadly fungus responsible for the extinction of more than 200 amphibian species worldwide has coexisted harmlessly with animals in Illinois and Korea for more than a century, a pair of studies have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.