New technology puts biomedical imaging in palm of hands

May 20, 2008
Enlarged diagram of filter mosaic
Enlarged diagram of filter mosaic

Researchers at Georgia Tech have developed a narrowband filter mosaic that will expand the uses and functionality of multispectral imaging—a technology that enables subsurface characterization. The new, single-exposure imaging tool could significantly improve point-of-care medical and forensic imaging by empowering front line clinicians with no specialized training to detect and assess, in real-time, the severity of bruises and erythema, regardless of patient skin pigmentation or available lighting.

In addition to this application, the filter could potentially offer a reliabile, low-cost method to instantaneously classify military targets, sort produce, inspect product quality in manufacturing, detect contamination in foods, perform remote sensing in mining, monitor atmospheric composition in environmental engineering and diagnose early stage cancer and tumors.

The technology was developed in Georgia Tech’s Center for Assistive Technology and Environmental Access (CATEA) as part of a project to design a portable erythema and bruise-detection technology that will enhance early prevention and diagnosis of pressure ulcers, a secondary complication for people with impaired mobility and sensation.

Currently, clinical assessment of bruises is subjective and unreliable, especially when on persons with darkly pigmented skin. Improved imaging can lead to earlier intervention which is vital in cases of suspected physical abuse. Similarly, early detection of erythema can trigger preventive care that can stop progression into pressure ulcers.

The filter mosaic can be conveniently laminated with imaging sensors used in digital cameras. With a patent pending, CATEA researchers are currently seeking collaborative or financial support to further develop and design the device.

“Although multispectral imaging has matured into a technology with applications in many fields, clinicians and practitioners in these fields have generally stayed away from it due to extremely high costs and lack of portability,” said Dr. Stephen Sprigle, director of CATEA and professor of industrial design and human physiology. “Now, the possibilities are plentiful.”

Source: Georgia Institute of Technology

Explore further: 'Ice Bucket Challenge' passes $100 mn mark

add to favorites email to friend print save as pdf

Related Stories

Magnetic memories on the right track

Aug 27, 2014

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need ...

Biomimetic photodetector 'sees' in color

Aug 25, 2014

(Phys.org) —Rice University researchers have created a CMOS-compatible, biomimetic color photodetector that directly responds to red, green and blue light in much the same way the human eye does.

Recommended for you

Cold cash just keeps washing in from ALS challenge

Aug 28, 2014

In the couple of hours it took an official from the ALS Association to return a reporter's call for comment, the group's ubiquitous "ice bucket challenge" had brought in a few million more dollars.

Medtronic spends $350M on another European deal

Aug 27, 2014

U.S. medical device maker Medtronic is building stronger ties to Europe, a couple months after announcing a $42.9 billion acquisition that involves moving its main executive offices across the Atlantic, where it can get a ...

Mind over matter for people with disabilities

Aug 26, 2014

People with serious physical disabilities are unable to do the everyday things that most of us take for granted despite having the will – and the brainpower – to do so. This is changing thanks to European ...

User comments : 0