Disabling mouse enzyme increases fertility

May 16, 2008

Changing the sugars attached to a hormone produced in the pituitary gland increased fertility levels in mice nearly 50 percent, a research group at Washington University School of Medicine in St. Louis has found. The change appears to alter a reproductive "thermostat," unveiling part of an intricate regulatory system that may one day be used to enhance human fertility.

"To adjust for the right amount of key reproductive hormones such as estrogen and testosterone, we may someday alter the sugars that are added to this hormone or others like it," says the group's leader, Jacques Baenziger, M.D., Ph.D., professor of pathology and immunology and of cell biology and physiology.

The report appeared recently in The Journal of Clinical Investigation.

Sugars are the most common addition to hormones and other proteins after they have been assembled from instructions in DNA. Nearly all proteins in the blood and on the surface of cells have sugars attached. Scientists believe sugar attachments modify and adapt proteins, enabling them to fill more than one job or changing the way they do their jobs in different contexts. But direct demonstration of such changes has been challenging.

Baenziger found a unique set of sugars consistently added to luteinizing hormone, which is part of a feedback loop between the pituitary, the reproductive organs and the liver. The loop cycles up and down over time, producing periodic peaks in other reproductive hormones and triggering regular events such as the ovaries' release of eggs.

For their study, Baenziger's laboratory genetically disabled one of the enzymes that attaches sugars to luteinizing hormone in mice. This enzyme isn't the only one to add sugars to the hormone, so the alteration changes the mix of sugars rather than eliminating them completely.

“Initially, we didn’t seem to see much of a difference in the animals,” Baenziger says. “But then someone came to me and said, ‘We have too many animals. We’re constantly weaning mice!’”

A closer look showed that the mice were having nearly 50 percent more pups than normal, and that the liver removed the altered hormone from the blood more slowly. In addition, female mice were maturing earlier, were always receptive to male overtures for mating and had a disrupted ovulatory cycle. Males had higher levels of testosterone and females had higher levels of estrogen. Surprisingly, the altered female mice were also better mothers: They ate their pups less often.

"One could speculate that fertility problems in some humans may be partly related to a defect somewhere in this very complicated regulatory system," says Baenziger. "They may have the wrong proportion of some of these sugars, or the receptors that clear the sugar-hormone combination from the blood might not bind as well."

Baenziger, who recently won a five-year, $3.3 million grant renewal from the National Cancer Institute, wants to learn more about the segments in the reproductive hormones that single them out for the addition of unique sugars. He hopes to use that information to search for other proteins that receive similar treatment.

"We know these systems for adding sugars are well-regulated, but we're just starting to get a sense for how they are controlled and how far-reaching their effects can be," he says. "I think we're going to see much more of this kind of alteration and regulation of protein properties via added sugars in many other important areas of biology."

Source: Washington University School of Medicine

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

New research signals big future for quantum radar

22 minutes ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

Living in the genetic comfort zone

1 hour ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

'Bright spot' on Ceres has dimmer companion

3 hours ago

Dwarf planet Ceres continues to puzzle scientists as NASA's Dawn spacecraft gets closer to being captured into orbit around the object. The latest images from Dawn, taken nearly 29,000 miles (46,000 kilometers) ...

Key facts on US 'open Internet' regulation

3 hours ago

A landmark ruling by the US Federal Communications Commission seeks to enshrine the notion of an "open Internet," or "net neutrality." Here are key points:

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.