Pioneering landscape-scale research releases first findings

May 16, 2008

The May issue of the Canadian Journal of Forest Research presents the preliminary findings of 23 scientists involved in one of the first landscape-scale experiments on how forest management affects western Ponderosa pine ecosystems.

The Blacks Mountain Interdisciplinary Research team includes U.S. Forest Service, Humboldt State University, Oregon State University, U.C. Riverside, University of Georgia and Wildlife Conservation Society scientists collaborating in research on large-scale manipulation of an ecosystem type extending from Mexico to Canada.

They present their findings in seven articles published as a special forum called, “Ecological Studies in Interior Ponderosa Pine—First Findings from Blacks Mountain Interdisciplinary Research.”

The research is intended to examine how controlled burns and changes in forest structure affect fire risk, retention of old-growth trees, insect infestations, wildlife and soils. It involved 12 plots of about 250 acres each in the 10,000-acre Blacks Mountain Experimental Forest in Northern California’s Lassen National Forest.

The site was selected because stands of old-growth trees can still be found on the experimental forest and research data collected from the site dates back to 1938, one of the oldest records of manipulation of a North American forest.

The scientists thinned stands so they either maintained a variety of sizes reminiscent of pre-settlement conditions or created a single canopy layer of even-aged trees characteristic of when loggers harvested the largest trees. They also completed controlled burns in half of each plot.

The team found that five years after thinning occurred, tree and stand growth significantly increased, and was even higher in even-aged stands with a single canopy layer.

This suggests that in the absence of treatments like thinning and controlled burns, old-growth characteristics will be lost as a result of lower growth rates and higher tree mortality. The scientists reached this conclusion by evaluating decades of growth data obtained on the experimental forest.

Controlled burns had little effect on the growth of large trees, but killed or weakened some smaller ones. Bark beetles were also more likely to colonize these weakened trees and therefore cause higher tree mortality.

The team also discovered a genus and species of a previously unknown ground-dwelling spider. Their research indicated old-growth characteristics intensified fire effects on spider populations because of increased forest debris.

Wildlife findings included a general lack of response from birds to thinning and controlled burns when some large trees were retained and burns were of low intensity.

Source: US Forest Service

Explore further: Ice in Arctic seas shrinks to sixth-lowest recorded

add to favorites email to friend print save as pdf

Related Stories

Lessons for saving our forests

Sep 12, 2014

In late July, UC Berkeley fire ecologist Scott Stephens was working in Stanislaus National Forest, gathering data on how a century had altered its character. What he saw were the signs of a clear and present ...

Feds allows logging after huge California wildfire

Aug 28, 2014

The U.S. Forest Service has decided to allow logging on nearly 52 square miles of the Sierra Nevada burned last year in a massive California wildfire, a move contested by environmentalists.

Recommended for you

Study links changing winds to warming in Pacific

16 hours ago

A new study released Monday found that warming temperatures in Pacific Ocean waters off the coast of North America over the past century closely followed natural changes in the wind, not increases in greenhouse ...

NASA image: Wildfires in Khabarovsk Krai, Russia

17 hours ago

Most of the fires captured in this image burn in Khabarovsk Krai, a territory occupying the coastline of the Sea of Okhotsk. Dozens of red hotspots, accompanied by plumes of smoke mark active fires. The smoke, ...

NASA sees Tropical Depression Polo winding down

20 hours ago

Infrared satellite imagery from NASA's Aqua satellite showed only a swirl of low-level clouds some deep clouds around Polo's weakening center on Sept. 22 as the storm weakened to a depression.

User comments : 0