Disorder Enables Extreme Sensitivity in Piezoelectric Materials

May 14, 2008

A research team working at the National Institute of Standards and Technology has found an explanation for the extreme sensitivity to mechanical pressure or voltage of a special class of solid materials called relaxors. The ability to control and tailor this sensitivity would allow industry to enhance a range of devices used in medical ultrasound imaging, loudspeakers, sonar and computer hard drives.

Relaxors are piezoelectrics—they change shape when a battery is connected across opposite ends of the material, or they produce a voltage when squeezed. “Relaxors are roughly 10 times more sensitive than any other known piezoelectric,” explains NIST researcher Peter Gehring. They are extremely useful for device applications because they can convert between electrical and mechanical forms of energy with little energy loss.

A team of scientists from Brookhaven National Laboratory, Stony Brook University, Johns Hopkins University and NIST used the neutron scattering facilities at the NIST Center for Neutron Research (NCNR) to study how the atomic “acoustic vibrations,” which are essentially sound waves, inside relaxors respond to an applied voltage. They found that an intrinsic disorder in the chemical structure of the relaxor crystal apparently is responsible for its special properties.

Atoms in solids are usually arranged in a perfect crystal lattice, and they vibrate about these positions and propagate energy in the form of sound waves. In typical piezoelectric materials, these acoustic vibrations persist for a long time much like the ripples in a pond of water long after a pebble has been thrown in.

Not so with relaxors: these vibrations quickly die out. The research team led by Brookhaven’s Guangyong Xu, compared how the sound waves propagated in different directions, and observed a large asymmetry in the response of the relaxor lattice when subjected to an applied voltage.

“We learned that the lattice’s intrinsic chemical disorder affects the basic behavior and organization of the materials,” says Gehring. The disorder that breaks up the acoustic vibrations makes the material structurally unstable and very sensitive to applied pressure or an applied voltage.

That disorder occurs because the well-defined lattice of atoms alternates randomly between one of three of its elements—zinc, niobium and titanium—each of which carries a different electrical charge.

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science and the Natural Science and Research Council of Canada.

Citation: G. Xu, J. Wen, C. Stock and P.M. Gehring. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nature Materials. Published online May 11, 2008.

Source: NIST

Explore further: Scaling up armor systems

add to favorites email to friend print save as pdf

Related Stories

Plastic solar cells' new design promises bright future

Aug 14, 2013

Energy consumption is growing rapidly in the 21st century, with rising energy costs and sustainability issues greatly impacting the quality of human life. Harvesting energy directly from sunlight to generate electricity using ...

Controlling oxygen may stop batteries from slowly fading

Aug 13, 2013

(Phys.org) —When oxygen atoms escape, they change the local electronic structure and cause the voltage to fade in a next-generation battery, according to theoreticians at Pacific Northwest National Laboratory ...

Recommended for you

Galaxy dust findings confound view of early Universe

7 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

23 hours ago

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.