New role found for a cardiac progenitor population

May 14, 2008

In a discovery that could one day lead to an understanding of how to regenerate damaged heart tissue, researchers at the University of California, San Diego have found that parent cells involved in embryonic development of the epicardium – the cell layer surrounding the outside of the heart – give rise to three important types of cells with potential for cardiac repair.

In a study published online May 14 in advance of publication in the journal Nature, researchers led by Sylvia Evans, Ph.D., professor of pharmacology at the Skaggs School of Pharmacy and Pharmaceutical Sciences and professor of medicine at UC San Diego, discovered in mice that developing embryonic cells that form the epicardium develop into cardiomyocytes, or muscle cells, as well as into connective tissue and vascular support cells of the heart.

The UCSD team generated mice which enabled lineage studies of epicardial cells, utilizing a marker for these lineages called a T-box transcription factor, Tbx18. “The surprising finding was that during the earliest stages of development, myocytes are also generated from parent cells within the embryonic epicardium,” said Evans. The Evans lab went on to demonstrate that, in the adult mouse, epicardial cells have lost their earlier embryonic ability to generate cardiomyocytes.

“Our findings raise the possibility that if we can restore the ability of adult epicardial cells in mammals to generate cardiomyocytes, it may enhance their future potential for cardiac repair following injury, such as a heart attack,” said co-first author Jody C. Martin of UCSD’s Department of Bioengineering.

While the adult mammalian heart has lost this capacity to generate new heart muscle, according to Evans, other investigators have demonstrated that zebrafish can fully regenerate their hearts following injury. This regeneration is associated with migration of Tbx 18-expressing cells to the site of injury, and the new formation of cardiomycytes.

If Tbx18-cell migration is prevented, there is no repair. The UCSD researchers’ findings suggest that one reason that zebrafish can regenerate their hearts may be that adult zebrafish epicardium somehow retains the capacity to generate cardiomyocytes.

Source: University of California - San Diego

Explore further: Reviving drugs with anti-stroke potential, minus side effects

add to favorites email to friend print save as pdf

Related Stories

Combination of imaging methods improves diagnostics

Feb 19, 2015

Scientists from the Helmholtz Zentrum München and the Technische Universität München have succeeded in a breakthrough for the further development of contrast agents and consequently improved diagnostics with imaging using ...

Engineer pursues biological solar power

Feb 11, 2015

A Binghamton University engineering researcher designed a biological solar cell that's a million times more effective than current technology. Preliminary data on Seokheun "Sean" Choi's next advancement is ...

Recommended for you

Suicide rates rising for older US adults

5 hours ago

Suicide rates for adults between 40 and 64 years of age in the U.S. have risen about 40% since 1999, with a sharp rise since 2007. One possible explanation could be the detrimental effects of the economic downturn of 2007-2009, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.