New role found for a cardiac progenitor population

May 14, 2008

In a discovery that could one day lead to an understanding of how to regenerate damaged heart tissue, researchers at the University of California, San Diego have found that parent cells involved in embryonic development of the epicardium – the cell layer surrounding the outside of the heart – give rise to three important types of cells with potential for cardiac repair.

In a study published online May 14 in advance of publication in the journal Nature, researchers led by Sylvia Evans, Ph.D., professor of pharmacology at the Skaggs School of Pharmacy and Pharmaceutical Sciences and professor of medicine at UC San Diego, discovered in mice that developing embryonic cells that form the epicardium develop into cardiomyocytes, or muscle cells, as well as into connective tissue and vascular support cells of the heart.

The UCSD team generated mice which enabled lineage studies of epicardial cells, utilizing a marker for these lineages called a T-box transcription factor, Tbx18. “The surprising finding was that during the earliest stages of development, myocytes are also generated from parent cells within the embryonic epicardium,” said Evans. The Evans lab went on to demonstrate that, in the adult mouse, epicardial cells have lost their earlier embryonic ability to generate cardiomyocytes.

“Our findings raise the possibility that if we can restore the ability of adult epicardial cells in mammals to generate cardiomyocytes, it may enhance their future potential for cardiac repair following injury, such as a heart attack,” said co-first author Jody C. Martin of UCSD’s Department of Bioengineering.

While the adult mammalian heart has lost this capacity to generate new heart muscle, according to Evans, other investigators have demonstrated that zebrafish can fully regenerate their hearts following injury. This regeneration is associated with migration of Tbx 18-expressing cells to the site of injury, and the new formation of cardiomycytes.

If Tbx18-cell migration is prevented, there is no repair. The UCSD researchers’ findings suggest that one reason that zebrafish can regenerate their hearts may be that adult zebrafish epicardium somehow retains the capacity to generate cardiomyocytes.

Source: University of California - San Diego

Explore further: Proton radiotherapy delivers more accurate cancer treatment, with less collateral damage

Related Stories

Surviving the heat for a good beer

Apr 16, 2015

Researchers at the Institute of Biological, Environmental and Rural Sciences at Aberystwyth University have collaborated with scientists from Dijon, France to try to solve the problem of bad tasting beer.

Engineering team invents a camera that powers itself

Apr 15, 2015

A research team led by Shree K. Nayar, T.C. Chang Professor of Computer Science at Columbia Engineering, has invented a prototype video camera that is the first to be fully self-powered—it can produce an ...

New ways to see light and store information

Apr 13, 2015

Researchers from the University of Cologne, Jilin University and the University of Nottingham have developed a method to significantly prolong the lives of charges in organic electronic devices.

Device extracts rare tumor cells using sound

Apr 06, 2015

A simple blood test may one day replace invasive biopsies thanks to a new device that uses sound waves to separate blood-borne cancer cells from white blood cells.

Recommended for you

Inaccurate reporting jeopardizing clinical trials

22 minutes ago

The team led by Dr Sheena Cruickshank of the Faculty of Life Sciences and Professor Andy Brass from the School of Computer Science analysed 58 papers on research into inflammatory bowel disease published between 2000 and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.