New gas sensors for monitoring carbon dioxide sinks

May 08, 2008
New gas sensors for monitoring carbon dioxide sinks
Functional principle of the membranbasierten Gassensors. A potential application of the new gas assensor is the monitoring of carbon dioxide storage from power plants. Credit: Source: Susan Waiter/UFZ

A novel gas sensor system makes it possible to monitor large areas cost-effectively the first time. The patented gas sensor is based on the principle of diffusion, according to which certain gases pass through a membrane faster than others.

Using a tube-like sensor it is possible to measure an average gas concentration value over a certain distance without influencing or distorting conditions in the measuring environment. If such sensors are laid in a particular pattern, it is possible to calculate the concentration of a gas over an area. The measuring tube can therefore replace a large number of individual sensors, making it much cheaper than previous methods.

The sensor was developed at the Helmholtz Centre for Environmental Research (UFZ) and is being presented for the first time at the 15th International Trade Fair for Water – Sewage – Refuse - Recycling (IFAT), which is taking place from 5 to 9 May in Munich.

Potential fields of application for the membrane-based gas sensors ("MeGa") are environmental remediation and landfill monitoring. But in future the technology could also be used to monitor gas pipelines, the formation of hydrogen sulphide in waterbodies or the underground injection of carbon dioxide. The principle can also be used in liquids, so the probe is also useful for monitoring waterbodies, including groundwater, and for monitoring boreholes. The slimline construction of the borehole and waterbody probe means that it can be used in gauges. The (permanent) connection to the part above ground allows data capture/evaluation to take place while the probe is submerged. A device with these features has never previously been available anywhere in the world. Another potential field of application is process monitoring in water treatment or in the food industry, e.g. in breweries and dairies.

The researchers are hoping that in future their system can also contribute to more intelligent ventilation of indoor spaces. An excessive level of carbon dioxide leads to fatigue and health problems, while excessive ventilation means a waste of energy. In classrooms, lecture theatres of all kinds and in workplaces there are therefore recommendations for indoor air concentrations of 1000 and 3000 ppm. "Monitoring these indoor air concentrations has failed so far because of a lack of suitable, reasonably priced measuring methods linked to appropriate ventilation technology," explains Dr Detlef Lazik from the UFZ. "With our membrane-based gas sensors it is for instance possible to have decentralised ventilation using a ventilator that is controlled by a gas sensor.

The ventilation is then simply switched on if an adjustable threshold value is exceeded." The same principle can be used for monitoring dangerous substances in buildings and facilities.

Source: Helmholtz Association of German Research Centres

Explore further: Tricorder XPRIZE: 10 teams advance in global competition to develop consumer-focused diagnostic device

add to favorites email to friend print save as pdf

Related Stories

Eye implant could lead to better glaucoma treatment

Aug 26, 2014

For the 2.2 million Americans battling glaucoma, the main course of action for staving off blindness involves weekly visits to eye specialists, who monitor—and control—increasing pressure within the eye.

A single diamond crystal does the job

Aug 25, 2014

(Phys.org) —X-ray absorption spectroscopy (XAS) is a technique used in many areas of science, from biology to materials science,that allows researchers to uncover information on a sample's molecular structure ...

Electronic 'noses' to detect chemical warfare gases

Aug 20, 2014

Researchers of the Universitat Politècnica de València have developed a prototype of electronic "nose" for the detection of chemical warfare gases, fundamentally nerve gases (Sarin, Soman and Tabun). 

Predicting and preventing costly breakdowns in machines

Aug 06, 2014

Everything's green in Duisburg. Well, almost. That's because many green dots and only one red one can be seen on a huge display that shows the city's street network. Every dot represents a traffic light. ...

Recommended for you

Augmented reality helps in industrial troubleshooting

Aug 28, 2014

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

User comments : 0