New gas sensors for monitoring carbon dioxide sinks

May 08, 2008
New gas sensors for monitoring carbon dioxide sinks
Functional principle of the membranbasierten Gassensors. A potential application of the new gas assensor is the monitoring of carbon dioxide storage from power plants. Credit: Source: Susan Waiter/UFZ

A novel gas sensor system makes it possible to monitor large areas cost-effectively the first time. The patented gas sensor is based on the principle of diffusion, according to which certain gases pass through a membrane faster than others.

Using a tube-like sensor it is possible to measure an average gas concentration value over a certain distance without influencing or distorting conditions in the measuring environment. If such sensors are laid in a particular pattern, it is possible to calculate the concentration of a gas over an area. The measuring tube can therefore replace a large number of individual sensors, making it much cheaper than previous methods.

The sensor was developed at the Helmholtz Centre for Environmental Research (UFZ) and is being presented for the first time at the 15th International Trade Fair for Water – Sewage – Refuse - Recycling (IFAT), which is taking place from 5 to 9 May in Munich.

Potential fields of application for the membrane-based gas sensors ("MeGa") are environmental remediation and landfill monitoring. But in future the technology could also be used to monitor gas pipelines, the formation of hydrogen sulphide in waterbodies or the underground injection of carbon dioxide. The principle can also be used in liquids, so the probe is also useful for monitoring waterbodies, including groundwater, and for monitoring boreholes. The slimline construction of the borehole and waterbody probe means that it can be used in gauges. The (permanent) connection to the part above ground allows data capture/evaluation to take place while the probe is submerged. A device with these features has never previously been available anywhere in the world. Another potential field of application is process monitoring in water treatment or in the food industry, e.g. in breweries and dairies.

The researchers are hoping that in future their system can also contribute to more intelligent ventilation of indoor spaces. An excessive level of carbon dioxide leads to fatigue and health problems, while excessive ventilation means a waste of energy. In classrooms, lecture theatres of all kinds and in workplaces there are therefore recommendations for indoor air concentrations of 1000 and 3000 ppm. "Monitoring these indoor air concentrations has failed so far because of a lack of suitable, reasonably priced measuring methods linked to appropriate ventilation technology," explains Dr Detlef Lazik from the UFZ. "With our membrane-based gas sensors it is for instance possible to have decentralised ventilation using a ventilator that is controlled by a gas sensor.

The ventilation is then simply switched on if an adjustable threshold value is exceeded." The same principle can be used for monitoring dangerous substances in buildings and facilities.

Source: Helmholtz Association of German Research Centres

Explore further: Researchers propose network-based evaluation tool to assess relief operations feasibility

add to favorites email to friend print save as pdf

Related Stories

From red Mars to green Earth

Apr 15, 2014

How can a sensor for analysing the atmosphere of Mars help us to cut greenhouse emissions on Earth? By going where no human or machine has been before.

Vegetables on Mars within ten years?

Apr 15, 2014

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

Smart sensor technology to combat indoor air pollution

Apr 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them ...

Honda smart home offers vision for zero carbon living

Mar 26, 2014

Honda and the University of California, Davis, today marked the opening of Honda Smart Home US, showcasing technologies that enable zero net energy living and transportation. The home in UC Davis West Village ...

Making synthetic diamond crystals in a plasma reactor

Mar 21, 2014

Synthetic diamond crystals are of interest to many industrial sectors. Their unique properties make them a suitable material for numerous applications including lenses for high-energy laser optics, X-ray ...

Portable frequency comb rolls out of the lab

Mar 21, 2014

A PML team is hitting the road with a fine-tooth comb. Scientists in the Quantum Electronics and Photonics Division have devised a portable optical frequency comb that is capable of laboratory-grade measurements ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

3 hours ago

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

New US-Spanish firm says targets rich mobile ad market

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...