Scientists identify key roadblock to gene expression

May 08, 2008
Scientists identify key roadblock to gene expression
In yeast, a nucleosome sits on top of the transcription start site, so RNA polymerase must contend with that nucleosome as soon as it begins to transcribe the gene. In contrast, nucleosomes are positioned further downstream in fruit flies, so transcription starts but then soon pauses at the first nucleosome RNA polymerase encounters. Credit: B. Franklin Pugh lab, Penn State University

A team of scientists has provided, for the first time, a detailed map of how the building blocks of chromosomes, the cellular structures that contain genes, are organized in the fruit fly Drosophila melanogaster. The work identifies a critical stop sign for transcription, the first step in gene expression, and has implications for understanding how the AIDS virus regulates its genes. The findings will be published in the 15 May 2008 issue of the journal Nature.

The scientists found that nucleosomes--chromosomal building blocks made up of proteins around which DNA is coiled--occur at precise locations along genes that are actively undergoing transcription. They also showed that RNA polymerase--the enzyme that reads genes as the first step in making proteins--is stopped at the first nucleosome, where it remains idle until it is directed to continue moving forward.

"This discovery is important because nucleosomes are barriers to transcription and we now are seeing the impact of nucleosome organization on RNA polymerase," said lead investigator B. Franklin Pugh, professor and Willaman Chair in Molecular Biology at Penn State University.

Using state-of-the-art ChIP-sequencing, a genome-mapping tool provided by collaborator Stephen S. Schuster, Penn State professor of biochemistry and molecular biology, and computational predictions developed by collaborators Ilya Ioshikhes, an assistant professor at Ohio State University, and Istvan Albert, a research assistant professor of bioinformatics at Penn State, the scientists precisely mapped the locations of hundreds of thousands of nucleosomes. The scientists then compared these maps to the team's earlier maps of the baker's yeast Saccharomyces cerevisiae, revealing that evolution has organized nucleosomes differently in simple life forms compared to more complex organisms like the fruit fly.

In yeast, a nucleosome sits on top of the transcription start site, so RNA polymerase must contend with that nucleosome as soon as it begins to transcribe the gene. In contrast, nucleosomes are positioned further downstream in fruit flies, so transcription starts but then soon pauses at the first nucleosome the RNA polymerase encounters. "This pause is maintained until chemical signals from the cell cue the removal of the nucleosome and encourage the RNA polymerase to continue along its path," said key collaborator David S. Gilmour, professor of molecular and cellular biology at Penn State and an expert on the pausing of RNA polymerase.

"A year ago, we could name about 10 genes that work this way. Now, we know of 1,000 in flies alone and we suspect there could be many more in humans," said Gilmour. "Even HIV genes have a paused RNA polymerase. Release of this pause may be key to activating HIV replication of otherwise latent viruses. Taking advantage of this new understanding might enable the development of more effective anti-viral drugs," he said.

"The bottom line is that we need to know how the expression of genes is regulated in order to understand the underpinnings of most human diseases, and these findings take us one step closer," said Pugh.

Source: Penn State

Explore further: Study solves the bluetongue disease 'overwintering' mystery

add to favorites email to friend print save as pdf

Related Stories

How plants 'feel' the temperature rise

Jan 07, 2010

Plants are incredibly temperature sensitive and can perceive changes of as little as one degree Celsius. Now, a report in the January 8th issue of the journal Cell, a Cell Press publication, shows how they not only 'feel' ...

Aging cells lose their grip on DNA rogues

Jan 30, 2013

(Phys.org)—Transposable elements are mobile strands of DNA that insert themselves into chromosomes with mostly harmful consequences. Cells try to keep them locked down, but in a new study, Brown University ...

The role of H3K9 in bringing order to the nucleus

Aug 31, 2012

(Phys.org)—Scientists from the Friedrich Miescher Institute for Biomedical Research have elucidated the histone modifications that lead to the sequestration of silent genes at the nuclear periphery. In ...

Recommended for you

Final pieces to the circadian clock puzzle found

5 hours ago

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

Measuring modified protein structures

9 hours ago

Swiss researchers have developed a new approach to measure proteins with structures that change. This could enable new diagnostic tools for the early recognition of neurodegenerative diseases to be developed.

New insights in survival strategies of bacteria

9 hours ago

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Bangladesh meet begins to save endangered tigers

10 hours ago

Some 140 tiger experts and government officials from 20 countries met in the Bangladeshi capital Dhaka on Sunday to review progress towards an ambitious goal of doubling their number in the wild by 2022.

Study solves the bluetongue disease 'overwintering' mystery

Sep 12, 2014

The bluetongue virus, which causes a serious disease that costs the cattle and sheep industries in the United States an estimated $125 million annually, manages to survive the winter by reproducing in the insect that transmits ...

User comments : 0