Prions show their good side

May 07, 2008

Prions, the infamous agents behind mad cow disease and its human variation, Creutzfeldt-Jakob Disease, also have a helpful side. According to new findings from Gerald Zamponi and colleagues, normally functioning prions prevent neurons from working themselves to death. The findings appear in the May 5th issue of the Journal of Cell Biology.

Diseases such as mad cow result when the prion protein adopts an abnormal conformation. This infectious form creates a template that induces normal copies of the protein to misfold as well. Scientists have long assumed that prions must also have a beneficial side but have been unable to pinpoint any such favorable traits.

In the new work, the authors found that mice lacking the prion protein had overactive brain cells. Their neurons responded longer and more vigorously to electrical or drug-induced stimulation than did neurons that had normal prion protein. This hyperactivity eventually led to the neurons’ death. The results might help explain why misfolded prions cause dementia: in the wrong conformation, the prion can no longer protect brain cells from deadly overexcitement.

Source: Rockefeller University

Explore further: The water trading strategies of plants

add to favorites email to friend print save as pdf

Related Stories

Cellular memory of stressful situations

Jan 28, 2015

Stress is unhealthy. The cells use therefore a variety of mechanisms to deal with stress and avert its immediate threat. However, certain stressful situations leave marks that go beyond the immediate response; ...

Study uncovers secrets of a clump-dissolving protein

Jan 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Recommended for you

Few friends for shy kangaroos

15 minutes ago

Kangaroo social networks could provide insight into the evolution of human personality differences.

A single target for microRNA regulation

25 minutes ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

World's wildlife critical to the economies of nations

1 hour ago

Wildlife is critical to the economies of nations. New Zealand's wildlife – whales, dolphins, red deer, thar, albatross, kiwi, tuatara, fish and kauri – attract tourists. And the tourists who come to see ...

Modern methods lead the way toward a rhino rebound

1 hour ago

Cutting-edge technology and techniques have become essential tools in the effort to save rhinos. Micro chips, translocation and consumer campaigns are helping shift the balance against record-setting poaching ...

Tracking bald eagles in coastal North Carolina

1 hour ago

Few animals capture the public imagination like the bald eagle. But despite their status as a national emblem, we still have a lot to learn about their behavior in the wild. Now NC State researchers are part ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 07, 2008
A human cell lacking the prion protein might even turn cancerous! Look into that!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.