Researchers report the cloning of a key group of human genes, the protein kinases

May 02, 2008

Although the human genome has been sequenced, research into mechanism of action of genes has been hampered by the fact that most human genes have not been isolated. This is true for even the most common class of cancer-associated genes, the protein kinases, which mediate the majority of signaling events in cells by phosphorylating and modulating the activity of other proteins. It has been estimated by systematic gene sequencing efforts that up to a quarter of kinases may play a role in human cancers.

In a study published in the 2nd of May issue of Cell, a research teams led by Professor Jussi Taipale from the National Public Health Institute and University of Helsinki, Finland, Professor Olli Kallioniemi from Institute for Molecular Medicine Finland (FIMM), and Dr. Wei-Wu He from the US-based biotechnology company Origene Technologies, Inc., report cloning of nearly all predicted human protein kinase genes in functional form, and generation of a corresponding set of kinases lacking catalytic activity that are necessary for functional studies.

They further used the kinome collection in several high-throughput screens, including a screen which identified two novel kinases regulating the Hedgehog signaling pathway – a key pathway linked to multiple types of human cancer. In addition, together with the group of Dr. Päivi Ojala, University of Helsinki, they identified a novel kinase required for activation of Kaposi’s sarcoma herpesvirus.

“The isolated kinase genes form a resource that scientist can now use to systematically map kinase signaling networks in different cellular disease models. The kinases are also promising targets for therapeutic intervention in the treatment of various cancers”, Professor Taipale states.

Source: University of Helsinki

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Researchers identify key pathway for plant cell growth

Jan 23, 2014

For plants, the only way to grow is for cells to expand. Unlike animals, cell division in plants happens only within a tiny region of the root and stem apex, making cell expansion the critical path to increased ...

New way to put the brakes on cancer found

Sep 09, 2013

While great strides have been achieved in cancer treatment, scientists are looking for the new targets and next generation of therapeutics to stop this second leading cause of death nationwide. A new platform for drug discovery ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 05, 2008
Protein Kinases

Signal transduction is defined as any biochemical communication from one part of the cell to another. It is essential for normal functioning of the cell and is highly regulated. The process begins with a specific protein called a receptor that is bound in the cell surface membrane. The portion of the receptor that faces the exterior of the cell contains a ligand or site that can bind to a signaling molecule. This binding results in the activation of the receptor. The interior portion of the receptor is either a functional enzyme, or can combine with and activate an enzyme.

Receptors for most growth factors are enzymes called tyrosine kinases. Signal transduction can be described as a cascade or reactions, in which a chemical change in one molecule leads to change in another molecule (mostly proteins). The signaling process begins when the enzyme receives a phosphate group from ATP, an energy generating molecule present in the cell. The phosphate group is then transferred to a series of protein kinase molecules in turn. The process continues until an activated molecule enters the nucleus, where it results in the activation of genes responsible for functioning of the cell cycle and cell division.

The cancer state is typically characterized by a signaling process that is unregulated and in a continuous state of activation. This may be due to the action of oncogenes, or genes that code for abnormal proteins that are themselves kinase enzymes or otherwise activate the signaling process. Gene mutations of cancer could also alter the receptor molecule in a manner that it remains active without regulation. The signal transduction pathways are very complex and still not completely understood. All proteins in the pathways are potential candidates for inhibition.

Epidermal growth factor receptors (EGFR) are typical enzyme-linked receptors, with an exterior ligand that binds with a signaling molecule, and an internal tyrosine kinase enzyme site. Drugs are developed to inhibit expression at either of these sites. Iressa binds to the external ligand, and has shown activity against non-small-cell lung cancer, adenocarcinoma and breast cancer. In the case of breast cancer, Iressa inhibits an overactive HER/neu tyrosine kinase. The monoclonal antibody, Erbitux, also binds to and inhibits the external ligand of EGFR. This antibody shows promise for use in patients with head a neck cancer who have developed resistance to chemotherapy.

Since unregulated signal transduction is a primary characteristic of many types of cancers, researchers are very active in the pursuit of inhibitors that can control the process. These drugs promise to become an essential part of the physician's armament against cancer, particularly those cancers that have developed resistance to other forms of treatment.

However, setbacks with Gleevec and Iressa, that specifically target protein kinases, reflect a lack of validated biomarkers. The next classes of signal transduction inhibitors, the vascular endothelial growth factor receptor (VEGFR) also lack validated biomarkers.

What is needed is to test the concept of targeted cancer drugs with biomarkers as pharmacodynamic endpoints, and with the ability to measure multiple parameters in cellular screens now in hand using flow cytometry.

The importance of mechanistic work around targets as a starting point for drug development should be downplayed in favor of a systems biology (cell function analysis) approach were compounds are first screened in cell-based assays, with mechanistic understanding of the target coming only after validation of its impact on the biology.

Gleevec turned out to be one of the first examples of a multi-targeted kinase inhibitor. The lessons learned from the Gleevec experience are that mutant kinase targets are a smoking gun for kinase dependency, resistance reveals tumor heterogeneity, and the conformation of the kinase (active or inactive) may be important when choosing drug leads to take into the clinic. In such molecules, different portions bind to different sites on kinases. Given the heterogeneity of tumors among people with cancer (and even in the same person over time), multiple drugs give clinicians an opportunity to vary dosing in proportion to the specific person's tumor expression profile and the pathways activated in that individual.

The fundamental role of kinases in cancer biology and the success of pioneering therapeutics have prompted intensive efforts to develop kinase inhibitors. However, many of these drugs cry out for validated clinical biomarkers to help set dosage and select people likely to respond.

More news stories

Less-schooled whites lose longevity, study finds

Barbara Gentry slowly shifts her heavy frame out of a chair and uses a walker to move the dozen feet to a chair not far from the pool table at the Buford Senior Center. Her hair is white and a cough sometimes interrupts her ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.