New discovery linked to DNA repair and cancer

May 01, 2008
New discovery linked to DNA repair and cancer
The newly discovered human hSSB1 protein is thought to resemble the structure of the SSB protein pictured here (DNA binding area is shown in red).

Scientists have discovered a new protein in humans that plays an important role in repairing DNA damage that could lead to cancer.

Professor Malcolm White of the University of St Andrews led the discovery alongside an international team from the Queensland Institute for Medical Research in Brisbane, Australia. The study is reported online by Nature.

Professor White and Dr Kum Kum Khanna in Brisbane discovered the protein, named hSSB1, when searching the human genome for ancient classes of proteins. They found a small gene, which had previously gone unnoticed, encoding a novel DNA binding protein that bore a strong resemblance to proteins from a group of microbes called Archaea.

The human hSSB1 gene was cloned and the protein analysed. hSSB1 binds to the single stranded form of the genetic material DNA, which is formed when DNA is damaged in the cell. The protein is thought to work by signalling to other proteins that damage has occurred, leading to important cellular responses. Cells deficient in hSSB1 become hypersensitive to DNA damage and die rapidly.

"When we discovered this gene we thought it might be important for DNA repair and genome stability, but we were amazed by just how important it seems to be," said Professor White, of the Centre for Biomolecular Sciences at St Andrews. "We identified the gene as a direct result of some basic research on DNA repair in micro-organisms. This emphasises the importance of supporting fundamental research."

Dr Derek Richard, formerly of St Andrews and now a researcher at the QIMR, added "The next challenge is to find out how it signals that DNA is damaged, and determine if it plays a role in the development of cancer or in patients' responses to chemotherapy and radiotherapy."

Source: University of St Andrews

Explore further: Assortativity signatures of transcription factor networks contribute to robustness

add to favorites email to friend print save as pdf

Related Stories

Alibaba's revenue growth surges in latest quarter

42 minutes ago

Alibaba's quarterly revenue growth is surging again, a development that should help the Chinese e-commerce company sell its shares in what could become the technology industry's most lucrative IPO.

Water 'thermostat' could help engineer drought-resistant crops

44 minutes ago

Duke University researchers have identified a gene that could help scientists engineer drought-resistant crops. The gene, called OSCA1, encodes a protein in the cell membrane of plants that senses changes in water availability ...

Intel says world's smallest 3G modem has been launched

1 hour ago

Analysts say why not. Intel is going after its own comfortable stake in the mobile market, where connectivity for wearables and "Internet of Things" household items will be in high demand. Intel on Tuesday ...

Recommended for you

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0