New discovery linked to DNA repair and cancer

May 01, 2008
New discovery linked to DNA repair and cancer
The newly discovered human hSSB1 protein is thought to resemble the structure of the SSB protein pictured here (DNA binding area is shown in red).

Scientists have discovered a new protein in humans that plays an important role in repairing DNA damage that could lead to cancer.

Professor Malcolm White of the University of St Andrews led the discovery alongside an international team from the Queensland Institute for Medical Research in Brisbane, Australia. The study is reported online by Nature.

Professor White and Dr Kum Kum Khanna in Brisbane discovered the protein, named hSSB1, when searching the human genome for ancient classes of proteins. They found a small gene, which had previously gone unnoticed, encoding a novel DNA binding protein that bore a strong resemblance to proteins from a group of microbes called Archaea.

The human hSSB1 gene was cloned and the protein analysed. hSSB1 binds to the single stranded form of the genetic material DNA, which is formed when DNA is damaged in the cell. The protein is thought to work by signalling to other proteins that damage has occurred, leading to important cellular responses. Cells deficient in hSSB1 become hypersensitive to DNA damage and die rapidly.

"When we discovered this gene we thought it might be important for DNA repair and genome stability, but we were amazed by just how important it seems to be," said Professor White, of the Centre for Biomolecular Sciences at St Andrews. "We identified the gene as a direct result of some basic research on DNA repair in micro-organisms. This emphasises the importance of supporting fundamental research."

Dr Derek Richard, formerly of St Andrews and now a researcher at the QIMR, added "The next challenge is to find out how it signals that DNA is damaged, and determine if it plays a role in the development of cancer or in patients' responses to chemotherapy and radiotherapy."

Source: University of St Andrews

Explore further: Hundreds of genetic mutations found in healthy blood of a supercentenarian

add to favorites email to friend print save as pdf

Related Stories

Rainbow trout genome sequenced

Apr 22, 2014

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

Rapid and accurate mRNA detection in plant tissues

Apr 17, 2014

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

Deadly human pathogen Cryptococcus fully sequenced

Apr 17, 2014

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Recommended for you

Classifying sequence variants in human disease

3 hours ago

Sequencing an entire human genome is faster and cheaper than ever before, leading to an explosion of studies comparing the genomes of people with and without a given disease. Often clinicians and researchers studying genetic ...

Two genes linked to inflammatory bowel disease

Apr 22, 2014

Inflammatory Bowel Disease (IBD), a group of chronic inflammatory disorders of the intestine that result in painful and debilitating complications, affects over 1.4 million people in the U.S., and while there are treatments ...

User comments : 0

More news stories

Cyber buddy is better than 'no buddy'

A Michigan State University researcher is looking to give exercise enthusiasts the extra nudge they need during a workout, and her latest research shows that a cyber buddy can help.