Wakame waste

May 01, 2008

Bacteria that feed on seaweed could help in the disposal of pollutants in the world's oceans, according to a new study by researchers in China and Japan. The discovery is reported in the International Journal of Biotechnology.

Shinichi Nagata of the Environmental Biochemistry Group, at Kobe University, Japan, working with colleagues at Shimane University and at Nankai University, China, explain that as marine pollution is on the increase novel approaches to removing toxic contaminants is becoming an increasingly pressing issue. They point out that various species of seaweed are able to extract toxic compounds from seawater and point to the brown seaweed, Undaria pinnatifida, known as wakame in Japan as having been the focus of research in this area for almost a decade.

Wakame can thrive evening the presence of carbon, ammonium, nitrate and phosphate in sea water that would otherwise be lifeless. However, there remains the problem of how to dispose of planted wakame, once it has feasted on organic and inorganic pollutants in seawater.

Organic pollutants are absorbed by cultured wakame and so cultivated wakame must be treated as a kind of toxic waste rather than a useful byproduct of marine bioremediation. The researchers point out that there may be a simple solution to the disposal problem. Natural wakame has been used as a fertilizer since ancient times, they explain, so the composting process could be an effective means of degrading wakame into a useful form and so recycling organic substances containing C, N and P from coastal waters.

The team has now found a highly efficient way to accelerate the composting process in the form of a novel marine bacterium, identified as a Halomonas species and given the label AW4.

Partial DNA analysis helped identify the active species isolated from the seaweeds in Awaji Island, Japan. The researchers explain that strain AW4 grows well even at high salt (sodium chloride) concentrations and can reduce the total organic components, including pollutant content, of the seaweed significantly within a week.

Source: Inderscience Publishers

Explore further: From dandruff to deep sea vents, an ecologically hyper-diverse fungus

add to favorites email to friend print save as pdf

Related Stories

Microsoft to unveil new Windows software

30 minutes ago

A news report out Thursday indicated that Microsoft is poised to give the world a glimpse at a new-generation computer operating system that will succeed Windows 8.

Ecologists team up to buy Texas bayside ranch

31 minutes ago

The Texas Parks and Wildlife Foundation and partners have announced the purchase of a sprawling southeast Texas ranch with funds put aside after the BP oil spill.

Climate change: meteorologists preparing for the worst

41 minutes ago

Intense aerial turbulence, ice storms and scorching heatwaves, huge ocean waves—the world's climate experts forecast apocalyptic weather over the coming decades at a conference in Montreal that ended Thursday.

Of bees, mites, and viruses

59 minutes ago

Honeybee colonies are dying at alarming rates worldwide. A variety of factors have been proposed to explain their decline, but the exact cause—and how bees can be saved—remains unclear. An article published on August ...

Recommended for you

Calcium and reproduction go together

2 hours ago

Everyone's heard of the birds and the bees. But that old expression leaves out the flowers that are being fertilized. The fertilization process for flowering plants is particularly complex and requires extensive communication ...

User comments : 0