Life-Probing Instrument Preparing for Mission to Mars

Apr 29, 2008
Life-Probing Instrument Preparing for Mission to Mars
Urey: Mars Organic and Oxidant Detector can detect the faintest traces of life's molecular building blocks and analyze whether they were produced by biological processes. The NASA-funded instrument is being developed for the ExoMars mission in 2013.

A new life-detecting instrument is preparing for a mission to the Red Planet. The Urey: Mars Organic and Oxidant Detector instrument, developed by a scientist at Scripps Institution of Oceanography at UC San Diego, received approximately $2 million in NASA funding to further refine the design and technology for the European Space Agency's (ESA) 2013 ExoMars Rover Mission.

Named after the late Nobel Laureate and UC San Diego scholar Harold C. Urey, the Urey instrument will perform the first search for key classes of organic molecules in the Martian environment using state-of-the-art analytical methods at part-per-million sensitivities. This highly sensitive instrument is the first with the capability to effectively discriminate between Martian materials produced by biological and non-biological processes. In addition, the investigation will provide definitive oxidation characteristics of those same samples.

Jeffrey Bada of Scripps Oceanography, along with a multinational research team including colleagues Frank Grunthaner of the NASA Jet Propulsion Laboratory, Richard Mathies of UC Berkeley, Aaron Zent of the NASA Ames Research Center, Richard Quinn of the SETI Institute, Pascale Ehrenfreund of the NASA Goddard Spaceflight Center and Mark Sephton of Imperial College, London have designed an investigation using the Urey instrument to look for signs of past or present life on Mars. It will analyze Martian rock and soil samples provided by the ESA-developed ExoMars Rover, for organic molecules and amino acids, the building blocks of life. Urey will be built and tested at the NASA Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“This next phase of funding assures that the Urey instrument’s design will be completed on schedule and we will be prepared to start building the actual instrument next year,” said Bada, professor of marine chemistry at Scripps and principal investigator of the Urey investigation.

The instrument has been supported by NASA Research and Development funding for the past several years leading up to this transition to Phase A Flight planning and design.

The Urey instrument has been identified as an integral component of ExoMars, a six-month mission on the Red Planet and ESA’s first rover mission to Mars. “We will be working very closely with our European partners over the next year to finalize interfaces and to further solidify how Urey fits into the overall ExoMars payload system,” said Allen Farrington, project manager of the Urey development team at JPL.

A compact instrument that can be held in the palm of one’s hand, Urey will search for trace levels of amine-containing organic molecules by “making espresso” from spoon-sized amounts of Martian soil, freeze drying the liquid to remove the water, and then slowly re-heating the residue, and concentrating the organic molecules by condensing them on a cold trap. A lab-on-a-chip, micro-fluidic, laser-induced fluorescence detector initially developed by team members at UC Berkeley will probe the trap’s contents.

In addition to the organic compound analyses, Urey will also test the Martian samples and environment for their ability to degrade organic compounds through oxidation. The Mars Oxidant Instrument developed by team members at NASA Ames Research Center, JPL and the SETI Institute will enable the scientists to evaluate the stability of compounds directly under Martian conditions. Even if no organic compounds are detected, this oxidation information will provide important data for understanding the reasons why organic compounds might not be preserved on Mars.

Source: University of California, San Diego

Explore further: Bad weather delays SpaceX launch with 3-D printer

add to favorites email to friend print save as pdf

Related Stories

Searching for organics in a nibble of soil

Feb 20, 2013

You might call it a high-tech panhandler, with its design for sifting through sprinkles of dirt to find tiny specks of organic material. Or you might think of it as a soil-eating-micro-espresso machine that ...

JFK's 1961 speech led space exploration to new heights

May 25, 2011

Fifty years ago, on May 25, 1961, President John F. Kennedy told a joint session of Congress that "this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the ...

Searching for Signs of Life on Mars

Feb 26, 2007

NASA-funded researchers are refining a tool that could not only check for the faintest traces of life's molecular building blocks on Mars, but could also determine whether they have been produced by anything ...

NASA funds instrument to probe life on Mars

Jan 12, 2007

A joint UC San Diego/UC Berkeley experiment to detect life on Mars that is scheduled to fly aboard the European ExoMars rover mission in 2013 will receive $750,000 in development funding from the National Aeronautics ...

NASA Selects Proposals for Future Mars Missions and Studies

Jan 09, 2007

On Monday, NASA selected for concept study development two proposals for future robotic missions to Mars. These missions would increase understanding of Mars' atmosphere, climate and potential habitability in greater detail ...

Origins of life

Sep 07, 2005

Calculations favor reducing atmosphere for early earth. Was Miller-Urey experiment correct? Using primitive meteorites called chondrites as their models, earth and planetary scientists at Washington University in St. Lou ...

Recommended for you

Internet moguls Musk, Bezos shake up US space race

6 hours ago

The space race to end America's reliance on Russia escalated this week with a multibillion dollar NASA award for SpaceX's Elon Musk and an unexpected joint venture for Blue Origin's Jeff Bezos.

Winter in the southern uplands of Mars

Sep 19, 2014

Over billions of years, the southern uplands of Mars have been pockmarked by numerous impact features, which are often so closely packed that they overlap. One such feature is Hooke crater, shown in this ...

Five facts about NASA's ISS-RapidScat

Sep 19, 2014

NASA's ISS-RapidScat mission will observe ocean wind speed and direction over most of the globe, bringing a new eye on tropical storms, hurricanes and typhoons. Here are five fast facts about the mission.

User comments : 0