Looking at neurons from all sides

Apr 27, 2008

A new technique that marries a fast-moving laser beam with a special microscope that look at tissues in different optical planes will enable scientists to get a three-dimensional view of neurons or nerve cells as they interact, said Baylor College of Medicine scientists in a report that appears today in the journal Nature Neuroscience.

“Most microscopes can only study cell function in two dimensions,” said Dr. Gaddum Duemani Reddy, an M.D./Ph.D. student at BCM at Houston and Rice University and also first author of the study. “To look at different planes, you have move your preparation (of cells) or the objective lens. That takes time, and we are looking at processes that happen in milliseconds.”

To solve that problem, he said, they developed a “trick” to quickly move a laser beam in three dimensions and then adapted that laser beam to the multi-photon microscope they were using. That allowed them to “see” the neuron’s function in three dimensions, giving them a much better view of its activity.

A multiphoton microscope looks much like a conventional, upright microscope but it has an adaption that allows it to look at tissues in sections. A conventional multiphoton microscope does that very slowly, he said.

“With ours, you can do it very quickly. We are starting to see how a single neuron behaves in our laboratory,” he said. The next step, he said, will be to use to it to look a clusters or colonies of neurons. This will enable them to actually see the neuronal interactions.

“At present, the technology is applied in my lab to study information processing of single neurons in brain slice preparations by 3D multi-site optical recording,” said Dr. Peter Saggau, professor of neuroscience at BCM and the paper’s senior author.

He is collaborating with two other labs on using the technology in other ways. In one, he said, researchers plan to use the technology to monitor nerve activity in the brains of lab animals in order study how populations of neurons communicate during visual stimulation. Another study attempts to use the technology to monitor stimulation of the acoustic nerve optically. Those scientists hope to reinstate hearing in lab animals whose inner ear receptors do not work.

Source: Baylor College of Medicine

Explore further: Unprecedented germ diversity found in remote Amazonian tribe

Related Stories

Evolving a bigger brain with human DNA

Feb 19, 2015

The size of the human brain expanded dramatically during the course of evolution, imparting us with unique capabilities to use abstract language and do complex math. But how did the human brain get larger ...

Revealing the inner workings of a molecular motor

Jan 12, 2015

In research published in the Journal of Cell Biology, scientists from the RIKEN Brain Science Institute in Japan have made important steps toward understanding how dynein—a "molecular motor"—walks along ...

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

Recommended for you

Bacteria play only a minor role stomach ulcers in cattle

Apr 17, 2015

Scientists at the University of Veterinary Medicine Vienna investigated whether stomach ulcers in cattle are related to the presence of certain bacteria. For their study, they analysed bacteria present in ...

New research reveals how our skeleton is a lot like our brain

Apr 17, 2015

Researchers from Monash University and St Vincent's Institute of Medical Research in Melbourne have used mathematical modelling combined with advanced imaging technology to calculate, for the first time, the number and connectivity ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.