A first: Researchers apply efficient coding principle to sense of smell

Apr 25, 2008

For the first time, researchers have demonstrated that the efficient coding principle regarding neurobiological processes applies to sense of smell. The team, comprised of researchers from the Czech Academy of Sciences and the French National Institute for Agricultural Research (INRA), displays this quantitative relationship in a study of male moths and pheromone plumes, published April 25th in the open-access journal PLoS Computational Biology.

The efficient coding principle – the adaptation of sensory neurons to the statistical characteristics of their natural stimulus – has previously been studied in visual and auditory neurobiology. In this new study, the researchers have extended this principle to sense of smell, studying how males locate their female mates via pheromone release. The team affirms that olfactory neurons in moths best process those stimuli that occur most frequently.

The authors selected the pheromone olfactory system because it is the only one in aerial animals for which quantitative properties of both the natural stimulus and the reception processes are known. These properties were used to determine the characteristics of the pheromone plume that are best detected by the male neuron reception system. The researchers then matched those characteristics with those from plume measurements in the field, providing quantitative evidence that this system obeys the efficient coding principle.

The researchers note that this study was confined to early detection events, most notably the interaction of pheromone molecules with membrane receptors. Exploring the quantitative relationship between the properties of biological sensory systems and their natural environment should lead not only to a better understanding of neural functions and evolutionary processes, but also to improvements in the design of artificial sensory systems.

Citation: Kostal L, Lansky P, Rospars J-P (2008) Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth. PLoS Comput Biol 4(4): e1000053. doi:10.1371/journal.pcbi.1000053

Source: Public Library of Science

Explore further: New study charts the global invasion of crop pests

add to favorites email to friend print save as pdf

Related Stories

From chaos to order: How ants optimize food search

May 26, 2014

Ants are capable of complex problem-solving strategies that could be widely applied as optimization techniques. An individual ant searching for food walks in random ways, biologists found. Yet the collective ...

Targeted synthesis of natural products with light

Dec 17, 2013

Photoreactions are driven by light energy and are vital to the synthesis of many natural substances. Since many of these substances are also useful as active medical agents, chemists try to produce them synthetically. ...

Promiscuous mouse moms bear sexier sons

Nov 18, 2013

University of Utah biologists found that when mother mice compete socially for mates in a promiscuous environment, their sons play hard and die young: They attract more females by making more urinary pheromones, ...

Beetle bait could help save Alberta pine forests

Nov 14, 2013

University of Alberta researchers are closing in on developing an effective bait to get ahead of the destructive spread of mountain pine beetle, which is now killing not only lodgepole pine forests, but also ...

Recommended for you

New study charts the global invasion of crop pests

6 hours ago

Many of the world's most important crop-producing countries will be fully saturated with pests by the middle of the century if current trends continue, according to a new study led by the University of Exeter.

Zambia lifts ban on safari hunting

7 hours ago

Zambia has lifted a 20-month ban on safari hunting because it has lost too much revenue, but lions and leopards will remain protected, the government said Wednesday.

Wolves susceptible to yawn contagion

11 hours ago

Wolves may be susceptible to yawn contagion, according to a study published August 27, 2014 in the open-access journal PLOS ONE by Teresa Romero from The University of Tokyo, Japan, and colleagues.

User comments : 0