Proteins that stop a major signaling pathway can also generate new proteins

Apr 24, 2008

The team was able to define the way in which proteins called beta arrestins (for their role in stopping signals) also turn on pathways that ultimately lead to the production of new proteins in virtually all tissues in the body.

Because proteins are the building blocks for all cells, this new pathway for the general control of protein manufacturing has opened a new universe for biological studies.

The beta arrestins were discovered two decades ago as the off switches for G protein-coupled receptors (GPCRs) on the cell surface, which do the job of sending and receiving important signals for cells. This mechanism is the target of about a third of all pharmaceuticals today.

The GPCRs, which were first theorized and discovered at Duke by the study's senior author, Robert J. Lefokowitz, MD, begin a signaling cascade that transmits a message from the cell surface, such as a hormone or neurotransmitter, to the cell's interior and tells it to do something, such as cranking out a particular protein.

These receptors regulate virtually all physiological processes, everything from heart rate to mood. Research on GPCRs has led to numerous successful drugs, including beta blockers which help relieve hypertension, angina and coronary disease, as well as new antihistamines and ulcer drugs. They also formed the basis of Nobel Prize winning work on smell receptors.

"The reason the new work is so exciting to me is that it reminds us, yet again, how the scientific process continuously renews itself, said Lefkowitz, James B. Duke Professor of Medicine and investigator of the Howard Hughes Medical Institute. "We discovered the beta arrestins almost 20 years ago, and now we find out they play signaling roles we never dreamed of back then. We are hopeful that these new ideas may lead to new types of drugs."

The study's findings, published in this month's Journal of Biological Chemistry, identified an enzyme called Mnk1 which is activated by beta-arrestin signaling. "What's been discovered here is that beta arrestins initiate important cell signals in their own right, and specifically the control over protein synthesis indicates that they may possess wide control of biological functions," said Scott DeWire PhD, lead author and adjunct assistant professor of medicine at Duke University.

"This added layer of complexity provides us opportunities to study receptors in a whole new way, and possibly identify beta-arrestin-specific signaling," DeWire said. "This is something completely unexpected according to the traditional dogma. Ten years ago, nobody would have imagined that beta-arrestins, with their ability to stop the GPCR signals, could exert global control over protein synthesis."

Source: Duke University

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

add to favorites email to friend print save as pdf

Related Stories

Microsoft CEO is driving data-culture mindset

9 hours ago

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

A small step toward discovering habitable Earths

Mar 05, 2014

University of Arizona researchers snapped images of a planet outside our solar system with an Earth-based telescope using essentially the same type of imaging sensor found in digital cameras instead of an ...

Researchers use Google's cloud to simulate key drug receptor

Feb 10, 2014

(Phys.org) —Roughly 40 percent of all medications act on cells' G protein-coupled receptors. One of these receptors, beta 2 adrenergic receptor site (B2AR), naturally transforms between two base configurations; knowing ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.