Researchers make new finding about how memory is stored

Apr 23, 2008

Researchers at Wake Forest University School of Medicine are the first to show that the location of protein-destroying “machines” in nerve cells in the brain may play an important role in how memories are formed – a finding with potential implications for treating Alzheimer’s and other brain diseases. The research is published in the current issue of Learning & Memory.

“We hope to exploit this finding to manipulate memory and find ways to make it better,” said Ashok Hegde, Ph.D., associate professor of neurolobiology and anatomy. “Our goal is to develop a new strategy for treating memory loss.”

In mice, the researchers studied nerve cells in the hippocampus, a region of the brain associated with memory coding and storing of memory. Scientists know that the synapses, or connections between nerve cells, play an important role in memory. Each nerve cell in the brain connects with at least a thousand other nerve cells.

“When humans or animals learn and store what is learned in their memory, these connections between cells become stronger or weaker,” said Hegde. “For example, if we learn to do something better, such as playing softball, the synapses that control our hand-eye coordination will become stronger. If we learn to ignore something, such as the barking of a neighbor’s dog, then the synapses that control paying attention will become weaker.”

In mice, scientists are able to determine the strength of these connections, and they studied how protein degradation affects connection strength. It is known that the degradation of proteins, which are made by cells to control cell functions, plays an important role in memory function.

Levels of proteins are controlled by cylinder-shaped protein-destroying machines known as proteasomes that are located throughout all cell types. The Wake Forest researchers are the first to show that the proteasomes in different parts of nerve cells plays different roles in controlling synapse strength – and presumably in memory. They made this discovery by studying connection strength with and without a chemical that blocks activity of the proteasomes.

They found that proteasomes located in the dendrites, the branched projections of a neuron that act to conduct the electrical stimulation, limit the strength of the connections between cells. Proteasomes in the nucleus, the part of the cell that contains genetic material, help maintain synapse strength for long periods of time.

Their next goal is to learn to block proteasome activity specifically in the dendrites to increase the strength of synapses – and of memory. They are currently conducting studies in mice to block proteasome activity in the dendrites, using mazes to test memory.

“If we see a memory enhancement when we block the proteasome in dendrites, we can use this strategy to treat memory loss,” said Hegde.

He said the research is important because it has implications for treating human diseases that affect memory.

“Protein degradation is abnormal in many brain diseases, including Alzheimer’s,” said Hegde. “Having a thorough knowledge of how protein degradation works to changes synapses is a first step to finding a cure for memory loss.”

Source: Wake Forest University

Explore further: Fragile X study offers hope of new autism treatment

add to favorites email to friend print save as pdf

Related Stories

After a data breach, it's consumers left holding the bag

3 minutes ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Staying warm: The hot gas in clusters of galaxies

33 minutes ago

Most galaxies lie in clusters, groupings of a few to many thousands of galaxies. Our Milky Way galaxy itself is a member of the "Local Group," a band of about fifty galaxies whose other large member is the ...

Gold rush an ecological disaster for Peruvian Amazon

33 minutes ago

A lush expanse of Amazon rainforest known as the "Mother of God" is steadily being destroyed in Peru, with the jungle giving way to mercury-filled tailing ponds used to extract the gold hidden underground.

Recommended for you

Stroke damage mechanism identified

23 hours ago

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.