First-class protein crystals thanks to weightlessness on earth

Apr 23, 2008

Dutch chemist Paul Poodt has developed two attractive alternatives for allowing protein crystals to grow under weightless conditions. If the crystals are grown upside down in a strong magnetic field, fluid flows that disrupt crystal growth are suppressed. Therefore, high-quality proteins no longer need to be grown in space, but can be grown here on earth.

Protein crystals provide vital knowledge for drug development. The production of an effective drug requires knowledge of how biomolecules such as body proteins are constructed. If you want to know how proteins work, you must first of all determine their molecular structure using X-ray diffraction.

This requires exceptionally high-quality protein crystals. However, allowing these to grow can be extremely difficult and sometimes even impossible: the presence of gravity gives rise to fluid flows in the crystal solution, which, in turn, disrupt the growth process. Undisturbed growth yields the finest crystals.

In order to prevent fluid flows, the decision is often taken to grow the protein crystals in space on. However, as this is a very expensive and time-consuming undertaking, scientists are looking for methods to create weightlessness on earth. The experiment in Nijmegen is the first in the world to demonstrate that a crystal can grow uniformly in a strong magnetic field.

Source: NWO

Explore further: Plant-based molecule may be key to cleanup of Fukushima nuclear reactor disaster

add to favorites email to friend print save as pdf

Related Stories

Watching protein crystal nucleation in real time

Jan 21, 2015

A major hurdle in structural biology and pharmacology is growing crystals to determine the structure of the biomolecules and pharmaceuticals under study. Researchers at the University of Tübingen, working ...

Mysteries of 'molecular machines' revealed

Dec 22, 2014

"Inside each cell in our bodies and inside every bacterium and virus are tiny but complex protein molecules that synthesize chemicals, replicate genetic material, turn each other on and off, and transport ...

What makes Champagne bubbly?

Dec 09, 2014

(Phys.org)—Just in time for the holidays, scientists have unraveled some of the chemistry behind the diffusion of CO2 molecules in a glass of Champagne. Among their findings, they discovered that ethan ...

Figuring out how we get the nitrogen we need

Oct 28, 2014

(Phys.org) —Nitrogen is an essential component of all living systems, playing important roles in everything from proteins and nucleic acids to vitamins. It is the most abundant element in Earth's atmosphere ...

Recommended for you

Micropore labyrinths as crucibles of life

Jan 27, 2015

Water-filled micropores in hot rock may have acted as the nurseries in which life on Earth began. An LMU team has now shown that temperature gradients in pore systems promote the cyclical replication and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.