First-class protein crystals thanks to weightlessness on earth

Apr 23, 2008

Dutch chemist Paul Poodt has developed two attractive alternatives for allowing protein crystals to grow under weightless conditions. If the crystals are grown upside down in a strong magnetic field, fluid flows that disrupt crystal growth are suppressed. Therefore, high-quality proteins no longer need to be grown in space, but can be grown here on earth.

Protein crystals provide vital knowledge for drug development. The production of an effective drug requires knowledge of how biomolecules such as body proteins are constructed. If you want to know how proteins work, you must first of all determine their molecular structure using X-ray diffraction.

This requires exceptionally high-quality protein crystals. However, allowing these to grow can be extremely difficult and sometimes even impossible: the presence of gravity gives rise to fluid flows in the crystal solution, which, in turn, disrupt the growth process. Undisturbed growth yields the finest crystals.

In order to prevent fluid flows, the decision is often taken to grow the protein crystals in space on. However, as this is a very expensive and time-consuming undertaking, scientists are looking for methods to create weightlessness on earth. The experiment in Nijmegen is the first in the world to demonstrate that a crystal can grow uniformly in a strong magnetic field.

Source: NWO

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

add to favorites email to friend print save as pdf

Related Stories

Ferns borrowed genes to flourish in low light

Apr 14, 2014

During the age of the dinosaurs, the arrival of flowering plants as competitors could have spelled doom for the ancient fern lineage. Instead, ferns diversified and flourished under the new canopy—using ...

A closer look into the TSLP cytokine structure

Apr 04, 2014

The PROXIMA 2 beamline at Synchrotron SOLEIL recently celebrated its first birthday. It's an occasion to reflect back upon a year of the collaborative work accomplished and its high scientific impact. In ...

Engineering team designs 'living materials'

Mar 23, 2014

Inspired by natural materials such as bone—a matrix of minerals and other substances, including living cells—MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving ...

Recommended for you

A greener source of polyester—cork trees

15 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Breakthrough points to new drugs from nature

17 hours ago

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

17 hours ago

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...