First-class protein crystals thanks to weightlessness on earth

Apr 23, 2008

Dutch chemist Paul Poodt has developed two attractive alternatives for allowing protein crystals to grow under weightless conditions. If the crystals are grown upside down in a strong magnetic field, fluid flows that disrupt crystal growth are suppressed. Therefore, high-quality proteins no longer need to be grown in space, but can be grown here on earth.

Protein crystals provide vital knowledge for drug development. The production of an effective drug requires knowledge of how biomolecules such as body proteins are constructed. If you want to know how proteins work, you must first of all determine their molecular structure using X-ray diffraction.

This requires exceptionally high-quality protein crystals. However, allowing these to grow can be extremely difficult and sometimes even impossible: the presence of gravity gives rise to fluid flows in the crystal solution, which, in turn, disrupt the growth process. Undisturbed growth yields the finest crystals.

In order to prevent fluid flows, the decision is often taken to grow the protein crystals in space on. However, as this is a very expensive and time-consuming undertaking, scientists are looking for methods to create weightlessness on earth. The experiment in Nijmegen is the first in the world to demonstrate that a crystal can grow uniformly in a strong magnetic field.

Source: NWO

Explore further: Video: How did life on Earth begin?

add to favorites email to friend print save as pdf

Related Stories

Scientists map protein in living bacterial cells

Sep 04, 2014

(Phys.org) —Scientists have for the first time mapped the atomic structure of a protein within a living cell. The technique, which peered into cells with an X-ray laser, could allow scientists to explore ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

Mind-blowing giant crystals—what can they teach us?

Aug 08, 2014

Giant gypsum crystals—some of which are in excess of 30 feet long and half a million years old—are found deep within the Naica mine in Chihuahua, Mexico and are renowned for their spectacular beauty. ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 0