Groundbreaking research could ignite new solutions to heat transfer in nano-devices

Sep 23, 2004

For the first time, an innovative research technique successfully completed a detailed measurement of how heat energy is created at the molecular level, an approach that could have far reaching implications for developing nano-devices.

Research results to be published in the upcoming issue of Science, detail a collaborative effort involving The University of Scranton, a Jesuit university in Pennsylvania, and the University of Illinois at Urbana-Champaign, a research institution in Illinois.

"This is the first time that anyone has measured how a specific motion of a molecule on one side of a molecular wall causes molecules within the wall to move," said John Deak, Ph.D., assistant professor of chemistry at The University of Scranton. "In nanotechnology, researchers design materials whose properties originate in clusters of molecules on the nanometer level. This research can be used to help us better understand how molecules interact on these dimensions."

The faculty and students involved were Dr. Deak and his undergraduate student Timothy Sechler; and University of Illinois chemistry professor Dana Dlott, Ph.D., Yoonsoo Pang, graduate assistant, and Zhaohui Wang, post-doctoral research associate.

"The experiment detailed the pathways for energy transfer and also provided the tools to study other molecules," said Dr. Dlott. "In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to move heat effectively. There is no reason that this technique is not applicable to just about any molecule."

Key to the discovery was the collaboration between the faculty members of both institutions of higher learning. A research concept developed at Scranton was put in practice using an advanced laser technology called IR Raman Spectroscopy at the University of Illinois. The laser measures the behavior of molecules in nanometer size spaces.

Included among the research scientist authors is Timothy D. Sechler, an undergraduate student at The University of Scranton's Dexter Hanley College for adult students.

"This project gave me the opportunity to see what my future would be like if I pursue a research track," said Mr. Sechler, a junior who now plans to pursue a Ph.D. in chemistry.

The research used vibrational spectroscopy with picosecond time resolution to monitor the flow of energy across surfactant molecules that separate droplets of confined water from a nonpolar liquid phase. Their research shows that the surfactant layer must be analyzed in terms of its vibrational couplings, rather than by ordinary heat conduction. Their research provided the first detail of the precise pathways for interfacial vibrational energy in both time and space resolution.

The paper, entitled "Vibrational energy transfer across a reverse micelle surfactant layer," will be published in the October 15 issue of Science, the prestigious journal of the American Association for the Advancement of Science, and on the Science Express Web site on Sept. 23, 2004.

Source: University of Scranton

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Solving an organic semiconductor mystery

Jan 16, 2015

Organic semiconductors are prized for light emitting diodes (LEDs), field effect transistors (FETs) and photovoltaic cells. As they can be printed from solution, they provide a highly scalable, cost-effective ...

Protein recycling machine visualized

Jan 13, 2015

Howard Hughes Medical Institute (HHMI) scientists have new structures of an essential cellular recycling machine that depict its structure with near atomic-level detail. The structures, which show a protein ...

Crush those clinkers while they're hot

Jan 13, 2015

Making cement is a centuries-old art that has yet to be perfected, according to researchers at Rice University who believe it can be still more efficient.

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.