Photoluminescence in nano-needles

Apr 22, 2008

Silicon is the workhorse among semiconductors in electronics. But in opto-electronics, where light signals are processed along with electronic signals, a semiconductor that is capable of emitting light is needed, which silicon can't do very well. Here gallium-arsenide (GaAs) is the workhorse, especially in the creation of light emitting diodes (LED) and LED lasers.

Scientists at the University of California, Berkeley have now grown GaAs structures into the shape of narrow needles which, when optically pumped, emit light with high brightness. The needles are approximately 3 to 4 microns long and taper at an angle of 6 to 9 degrees down to tips approximately 2 to 5 nanometers across.

These needles are not yet lasers; creating them will be the next step. This represents the first time a lab has been able to fashion GaAs into a defect-free crystal structure (technical name: wurtzite) exactly like this on a silicon substrate and without the use of catalysts.

Lead researcher Michael Moewe says that, in addition to optoelectronic devices, he expects the needles to be valuable in such applications as atomic force microscopy (AFM), where the sharp tips can be grown in arrays without further etching or processing steps. Some believe that AFM arrays, besides speeding up the recording of nearly atomic-resolution images of surfaces (allowing one to create atomic movies), might be used to create a new form of data storage by influencing the atoms in the sample. The needles also may be used in producing tip-enhanced Raman spectroscopy.

Raman spectroscopy is a process in which the energy levels of molecules are determined by shining light at a known frequency into the sample and then observing the frequency of the outgoing light. Delivering light from a sharp tip allows a much more targeted examination of the sample, possibly even permitting the spectroscopic study of single molecules.

The research will be presented at the 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) May 4-9 at the San Jose McEnery Convention Center in San Jose, Calif.

Source: Optical Society of America

Explore further: Scientists unveil new technology to better understand small clusters of atoms

add to favorites email to friend print save as pdf

Related Stories

New particle-sorting method breaks speed records

Jun 24, 2014

Researchers compare the processing of biological fluid samples with searching for a needle in a haystack—only in this case, the haystack could be diagnostic samples, and the needle might be tumor cells ...

Recommended for you

Relaxing DNA strands by using nano-channels

16 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0