Nanosize Rods Light Up Pancreatic Cancer Cells

Apr 18, 2008

Quantum dots have shown promise as ultrabright contrast agents for use in a variety of cancer imaging studies. Now, a team of investigators at the Multifunctional Nanoparticles in Diagnosis and Therapy of Pancreatic Cancer Platform Partnership, headed by Paras Prasad, Ph.D., of the State University of New York at Buffalo, has shown that quantum rods may perform even better than their spherical cousins.

Reporting their work in the journal Advanced Materials, the investigators created quantum rods of two different sizes: One quantum rod emitted orange light; the other emitted red light.

The investigators then attached the red quantum rod to a monoclonal antibody that recognizes a protein known as mesothelin and the orange quantum rod to a monoclonal antibody that binds to a protein known as Claudin-4. These two proteins are overexpressed by both primary and metastatic human pancreatic cancer cells. After adding both of the conjugated quantum rods to pancreatic cells growing in culture, the investigators were able to easily spot both optical labels using standard fluorescence microscopy.

Subsequent experiments showed that the cells took in the quantum rods via a process known as receptor-mediated endocytosis. When the same quantum rods were added to tumor cells that do not overexpress mesothelin or Claudin-4, the quantum rods were not taken up by the nontargeted tumor cells. These results show that cell uptake is specific to those cells targeted by the antibodies conjugated to the quantum rods.

This work, which was supported in part by the NCI’s Alliance for Nanotechnology in Cancer, is detailed in the paper “Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods.” An abstract of this paper is available at the journal’s Web site.

Source: National Cancer Institute

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Quantum mechanics to charge your laptop?

Sep 18, 2014

Top scientists from UC Berkeley and MIT found the expertise they lacked at FIU. They invited Sakhrat Khizroev, a professor with appointments in both medicine and engineering, to help them conduct research ...

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

The science that stumped Einstein

Jul 01, 2014

In 1908, the physics world woke up to a puzzle whose layers have continued to stump the greatest scientists of the century ever since. That year, Dutch physicist Kamerlingh Onnes cooled mercury down to -450° ...

Recommended for you

Engineered proteins stick like glue—even in water

7 hours ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Smallest possible diamonds form ultra-thin nanothreads

7 hours ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0