Mars radar opens up a planet’s third dimension

Apr 17, 2008
South polar layered deposit on Mars
South polar layered deposit (SPLD) on Mars. The Mars Express radar experiment, MARSIS, was designed to penetrate deep and it has delivered on its promise. The above figure shows the base of the SPLD at the deepest recorded point of 3.7 km. In contrast, The Shallow Subsurface Radar (SHARAD) on NASA’s Mars Reconnaissance Orbiter designed as a high-resolution radar for a maximum penetration of 1 km has difficulty detecting the SPLD base. The two complementary instruments work together to discover hidden martian secrets. Credits: MARSIS: ESA/NASA/ASI/JPL-Caltech/University of Rome; SHARAD: NASA/JPL-Caltech/ASI/University of Rome/Washington Universtiy in St. Louis

ESA’s Mars Express radar sounder, MARSIS, has looked beneath the martian surface and opened up the third dimension for planetary exploration. The technique’s success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders.

No matter how accurate a camera is, it can only map a planet’s surface. To retrieve information about the underground realm, planetary scientists in the past would have thought it necessary to land on the surface and start digging. But that would only be good for a single spot on a large planet and the first few decimetres of the surface.

To get the global picture of the subsurface they need a radar sounder, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), to find the best spots for the future landers to go and dig.

MARSIS was an experiment in every sense of the word. “It was a leap into the unknown,” says Ali Safaeinili, MARSIS co-investigator at the Jet Propulsion Laboratory (JPL), California, USA.

No one had ever used a radar sounder from orbit on another planet before. So the team could not even be sure whether it would work as planned. The subsurface of the planet might have been too opaque to the radar waves or the upper levels of martian atmosphere (ionosphere) might have distorted the signal too much to be useful. Thankfully, none of this happened.

“We have demonstrated that the polar caps at Mars are mostly water ice, and produced an inventory so now we know exactly how much water there is,” says Roberto Orosei, MARSIS Deputy Principal Investigator, IASF-INAF, Italy.

Armed with a better understanding of how planetary radar sounders work, the MARSIS team is beginning to look further afield in the Solar System, to other bodies that might benefit from radar investigation. One obvious target is Jupiter’s icy moon, Europa.

A MARSIS-type experiment in orbit around Europa could probe its icy crust to help understand the puzzling features we see on the surface. It may even see the interface at the bottom of the ice where an ocean is expected to begin.

At Saturn’s moon, Titan, penetrating radar could be used to measure the depths of the hydrocarbon lakes that the Cassini spacecraft has detected. It could also probe the structure beneath the enigmatic geysers that Cassini has observed on another one of Saturn’s satellites, Enceladus. “Radar sounders are very well suited to exploring icy worlds,” says Orosei.

But not just for icy moons. Asteroids and comets could be thoroughly scanned by a radar sounder, producing three-dimensional maps of their interior – perhaps exactly the data we will need if, one day, we have to nudge one out of Earth’s way.

MARSIS has served as an excellent example of international collaboration between Europe and America. Increasingly, such collaborations are set to become a positive feature of our joint exploration of space.

Source: ESA

Explore further: Video gives astronaut's-eye view inside NASA's Orion spacecraft

add to favorites email to friend print save as pdf

Related Stories

NASA Mars research helps find buried water on Earth

Sep 15, 2011

A NASA-led team has used radar sounding technology developed to explore the subsurface of Mars to create high-resolution maps of freshwater aquifers buried deep beneath an Earth desert, in the first use of ...

Mars radar could help find water in Mideast: NASA

Apr 01, 2010

Technology used to discover underground ice on Mars could also be used in the search for water on Earth and help ward off conflict in the arid Middle East, a NASA scientist said Thursday.

Phobos flyby season starts again

Feb 16, 2010

(PhysOrg.com) -- Today Mars Express began a series of flybys of Phobos, the largest moon of Mars. The campaign will reach its crescendo on 3 March, when the spacecraft will set a new record for the closest ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
3 / 5 (1) Apr 18, 2008
Mars polar ice? There is alot of doubt about this. Ice mixed with soil, or frozen CO2?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.