Self-repairing materials

Apr 17, 2008

Will the day come when cracks in buildings close up without external help and before they get to the stage where they cause damage to the component? This might appear utopia, but it already occurs in nature. When a person suffers a minor wound, the human body reacts to close the opening, sending the blood platelets needed to the affected area – and with no need in many cases for any external coagulant substance to be employed.

This reaction of nature to damage suffered was the starting point for the development of self-repairing polymer materials with the capacity of recovering a good part of the properties lost and with no or with minimal external help. In the case of ceramics or metallic materials, progress is much slower, being limited to initial steps.

There are currently two notable self-repairing technologies in polymer materials: adhesives and thermal encapsulation.

As the name suggests, the first of these involves a series of "stores" of adhesive found distributed in the most homogenous manner possible throughout the material, so that when the crack reaches one of these nodes the adhesive is secreted, together with a catalyst, and the crack is closed and the material polymerised.

There are two variants within this line of technology, depending on whether adhesive-containing microcapsules or tubes filled with adhesive are employed.

INASMET-Tecnalia has worked on this line in a project undertaken for the AIRBUS, having managed to produce a series of microcapsules and distribute them in a polymeric resin. This was a fundamental step to finding out the difficulties that might arise in the encapsulation process.

The second method, developed by Bristol University, is a project for the ESA, is very similar. The difference lies in the use of tubes rather than microcapsules filled with adhesive.

The thermal method uses a different repair methodology. The material, developed by the University of Sheffield, is a polymeric matrix compound, reinforced with carbon fibres. The polymer matriz, in turn, is made of a solid solution of a thermoplastic polymer and another thermostable polymer.

The only restriction of the thermostable material is that it has to be suitable for incorporating these reinforcment fibres into it. The thermoplastic material has greater limitations, limiting it chances of being chosen for use, being highly dependant on the thermostable material used. In this case, when damage is detected, repair is carried out by heating the material with some device incorporated into it.

This heating is capable of raising the temperature above that of the fusion of the thermoplastic material which, as a result, melts and flows into the damaged areas so that the cracks are sealed and the component restored to its former condition. INASMET-Tecnalia has also worked in this field within the framework of the aforementioned project.

It should be underlined that the development of self-repairing materials is still at initial stages and there is a long way to go yet before reaching the desired goal. Nevertheless, the results obtained are encouraging.

Apart from participation in this project, INASMET-Tecnalia is working on a number of research lines related to the growing demand that is anticipated for self-repairing materials.

Source: Elhuyar Fundazioa

Explore further: Scaling up armor systems

add to favorites email to friend print save as pdf

Related Stories

'Tiger heavyweight' Nepal hosts anti-poaching summit

7 hours ago

Nepal's success in turning tiger-fearing villagers into their protectors has seen none of the endangered cats killed for almost three years, offering key lessons for an anti-poaching summit opening in Kathmandu ...

Japan launches new spy satellite

7 hours ago

Japan on Sunday successfully launched a back-up spy satellite, its aerospace agency said, after cancelling an earlier lift-off due to bad weather.

NASA launches satellite to measure soil moisture

7 hours ago

NASA on Saturday launched a new Earth-observing satellite that aims to give scientists high-resolution maps showing how much moisture lies in soil in order to improve climate forecasts.

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.