Human vascular system in mice

Apr 14, 2008
Human Vascular System in Mice
Three-dimensional reconstruction of a vascular system made of human endothelial cells in mice 20 days after injection of the spheroids. Image taken with a confocal microscope, stained green. Credit: Professor Hellmut Augustin, Joint Research Division "Vascular Biology" of the Mannheim Medical Faculty of the University of Heidelberg and the German Cancer Research Center

Tumors use the body's blood system for their own purposes: They stimulate the growth of blood vessels that supply the tumor. Medical treatment blocks this process in order to restrain tumors. Scientists of the Joint Research Division "Vascular Biology" of the Mannheim Medical Faculty of the University of Heidelberg and the German Cancer Research Center, collaborating with colleagues in Freiburg, have developed a method for producing a complex human vascular system in mice.

The formation of new blood vessels, or angiogenesis, is an Achilles’ heel of tumor growth, because tumors depend on the supply of oxygen and nutrients for survival. Therefore, for some years now substances called angiogenesis inhibitors have been used in cancer treatment to suppress this process.

In order to advance this new research field, a team of researchers headed by Professor Hellmut Augustin has developed a method to create a complex human vascular system in mice, which stays functional even after several months.

The method is based on the observation that isolated cells of the vessel walls, called endothelial cells, congregate spontaneously in cell cultures to form aggregates known as spheroids. “Individual endothelial cells floating in suspension are doomed to die – the association in spheroids stabilizes them,” says Hellmut Augustin.

The scientists Abdullah Alajati and Anna Laib have been able to inject such spheroids, embedded in a gel matrix, under the skin of mice and to stimulate the formation of a network of human blood vessels by means of growth factors. The mice were genetically modified in such a way that their immune system was unable to reject the foreign cells. “The newly formed blood vessels are made exclusively of human endothelial cells,” explains Anna Laib, a young researcher at the DKFZ. “At the matrix borders the human endothelial cells establish contact with those of the mouse. In this way, the transplanted human vasculature gets connected to the blood circulation of the mouse.”

The method provides experimental freedom and may deliver answers to various questions of vascular biology research. Scientists can genetically manipulate the endothelial cells before transplantation in order to investigate the formation of vascular networks.

In addition, it is possible to test the effect of pharmacological substances; the Freiburg-based company ProQinase GmbH, which is involved in the study, is already conducting such experiments. “The method is even interesting for the production of artificial tissues,” Hellmut Augustin says. “So far, one difficulty with the use of artificial replacement tissues has been to create a functioning vascular system that sufficiently supplies the tissue constructs.”

Source: Helmholtz Association of German Research Centres

Explore further: Diet affects men's and women's gut microbes differently

add to favorites email to friend print save as pdf

Related Stories

Bone marrow-on-a-chip unveiled

May 05, 2014

The latest organ-on-a-chip from Harvard's Wyss Institute for Biologically Inspired Engineering reproduces the structure, functions and cellular make-up of bone marrow, a complex tissue that until now could ...

'Nanobionics' aims to give plants super powers

Apr 02, 2014

Plants are an engineering marvel of nature. Fueled by sunlight, they recycle our carbon dioxide waste into fresh oxygen for us to breathe. Plus, they make the world prettier. But, with a little help from us humans, can they ...

An essential step toward printing living tissues

Feb 19, 2014

A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard School of Engineering and Applied Sciences (SEAS) creates intricately patterned ...

Recommended for you

Diet affects men's and women's gut microbes differently

6 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

8 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

10 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0