Moondust in the Wind

Apr 11, 2008
Lunar surface charging and electric fields caused by sunlight and solar wind. Credit: Jasper Halekas and Greg Delory of U.C. Berkeley, and Bill Farrell and Tim Stubbs of the Goddard Space Flight Center.

Moondust is dry, desiccated stuff, and may seem like a dull topic to write about. Indeed, you could search a ton of moondust without finding a single molecule of water, so it could make for a pretty "dry" story. But like the dust in your mother's attic, moondust covers something interesting – the moon – and even the dust itself has curious tales to tell.

A group of NASA and University of Alabama researchers are what you might call "active listeners": Mian Abbas, James Spann, Richard Hoover and Dragana Tankosic have been shooting moondust with electrons, levitating moondust using electric fields, and scrutinizing moondust under an electron microscope. All this is happening at the National Space Science and Technology Center's "Dusty Plasma Lab" in Huntsville, Alabama.

Why such attention? Spann explains: "Humans will return to the moon in a few years and have to know what to expect. How do you live and work in a place filled with moondust? We're trying to find out."

"Moondust was a real nuisance for Apollo astronauts," adds Abbas. "It stuck to everything – spacesuits, equipment, instruments." The sharp-edged grains scratched faceplates, clogged joints, blackened surfaces and made dials all but unreadable. "The troublesome clinginess had a lot to do with moondust's electrostatic charge."

Dust on the moon is electrified, at least in part, by exposure to the solar wind. Earth is protected from the solar wind by our planet's magnetic field, but the moon has no global magnetic field to ward off charged particles from the sun. Free electrons in the solar wind interact with grains of moondust and, in effect, "charge them up."

At the Dusty Plasma Lab, the scientists simulate solar wind-like conditions to study the moon's dust in a realistic environment. In previous studies, Abbas and colleagues examined the effects of ultraviolet sunlight on grains of moondust to help construct theories about how moondust will behave during daylight hours on the moon. (UV photons can also charge up moondust.) Now they are investigating how the grains behave in the dark of night, when the swirling solar wind dominates "lunar weather."

"Fortunately, we know what the solar wind is like, so we can simulate it," says Spann.

In a typical experiment, Abbas peppers the dust grains with a beam of electrons from an electron gun. He suspends a single grain of moondust inside the vacuum test chamber and bombards the grain with different numbers of electrons.

"We've had some surprising results," says Abbas "We're finding that individual dust grains do not act the same as larger amounts of moon dust put together. Existing theories based on calculations of the charge of a large amount of moondust don't apply to the moondust at the single particle level."

When it comes to electrostatic charging, grains of moondust are individualists capable of eccentric and surprising behavior. For instance, in one experiment conducted by Abbas, pelting a positively charged grain of moondust with electrons (which carry a negative charge) caused the grain to exhibit a more positive charge. Consider that grain a contrarian! Abbas thinks that each electron hitting the grain dislodged two or more electrons already there, resulting in a net increase of positive charge.

Not all moondust behaves this way. How each grain reacts depends on a variety of factors including the grain's size, the charge it already carries, and the number of free electrons incoming.

Spann adds, "We believe the single grains will behave differently on the moon, too – not just in our lab. Our results are closer to what's really happening on the moon. We're saying, 'Hey wait a second guys. We're finding something odd. When you go to the moon, it's going to be a little different than you thought.'"

You can bet mission planners will be listening as the moondust tells its tale.

Source: Science@NASA, by Dauna Coulter

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

True Fakes: Scientists make simulated lunar soil

Jan 03, 2007

Life is tough for a humble grain of dirt on the surface of the Moon. It's peppered with cosmic rays, exposed to solar flares, and battered by micrometeorites--shattered, vaporized and re-condensed countless ...

Lunar Dust Buster

Apr 20, 2006

Ever get a fragile item packed in a box filled with Styrofoam peanuts? Plunge your hands into the foam peanuts to search for the item, and when you pull it out foam peanuts are clinging to your arms. Try to ...

Magnetic Moondust

Apr 05, 2006

Thirty-plus years ago on the moon, Apollo astronauts made an important discovery: Moondust can be a major nuisance. The fine powdery grit was everywhere and had a curious way of getting into things. Moondust ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Jayem
not rated yet Apr 11, 2008
John -- www.moonposter.ie

Obviously, these Alabama researchers will be very interested in the "Mapping Lunar Surface Electric Fields and Characterizing the Exospheric Dust Environment" experiement that may be included on the upcoming LRO mission to launch in October (see more at www.moonposter.ie/news.htm ).

John
Moon Missions %u2014 http://www.moonposter.ie/missions.htm (Kaguya, Chang'e-1, Chandrayaan-1, LRO, GRAIL & LADEE, LunaGlob, LEO, MoonLITE)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.