Elastic stresses influence formation of leaf veins

Apr 11, 2008

Elastic stresses may play a crucial role in determining a leaf's venation pattern, according to a joint Argentinian-French study published April 11th in the open-access journal PLoS Computational Biology. The researchers have developed a model that reproduces statistical properties of venation patterns, based on the assumption that cells can suffer abrupt elastic distortions during growth. These distortions appear due to the elastic stresses generated by the unequal growth rate of different leaf tissues.

Leaf veins are the channels that conduct substances within the leaf and lend support to the leaf tissue. The accepted view of vein formation claims that the transport of the hormone auxin triggers cell differentiation to form veins. Although auxin plays a fundamental role in vein formation, there are important features of the leaf vascular system which remain unexplained. In particular, flux of auxin would produce a tree-like branched vein pattern, reminiscent of a river network, while real venation patterns are highly interconnected, more akin to a crack pattern in mud or paint.

These facts led Fabiana Laguna, Steffen Bohn, and Eduardo Jagla to further analyze a previously-proposed hypothesis that elastic stresses play an important role in leaf venation. To test whether this hypothesis could sustain a quantitative comparison with actual venation patterns, they developed and implemented a numerical model, and found simulated patterns with statistical properties similar to natural ones.

The full explanation for the development of veins could involve both elastic stresses and the influence of auxin, the authors say. They believe that their study could trigger further experimental work to test the relevance of elastic stresses in vein formation.

Citation: Laguna MF, Bohn S, Jagla EA (2008) The Role of Elastic Stresses on Leaf Venation Morphogenesis. PLoS Comput Biol 4(4): e1000055. doi:10.1371/journal.pcbi.1000055 (www.ploscompbiol.org/doi/pcbi.1000055)

Source: Public Library of Science

Explore further: Researchers study vital 'on/off switches' that control when bacteria turn deadly

add to favorites email to friend print save as pdf

Related Stories

Adhesion at 180,000 frames per second

Oct 14, 2013

Adhesion is an extremely important factor in living nature: insects can climb up walls, plants can twine up them, and cells are able to adhere to surfaces. During evolution, many of them developed mushroom-shaped ...

Shooting at ceramics

Apr 02, 2012

Producing thin ceramic components has until now been a laborious and expensive process, as parts often get distorted during manufacture and have to be discarded as waste. Researchers are now able to reshape ...

Recommended for you

A new quality control pathway in the cell

9 hours ago

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

Stem cells use 'first aid kits' to repair damage

12 hours ago

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

User comments : 0