Study identifies gene involved in blood stem cell replication, movement

Apr 09, 2008

Researchers at the Joslin Diabetes Center have identified a gene that is responsible for the division and movement of marrow-derived, blood-forming stem cells, a finding that could have major implications for the future of bone marrow and blood cell transplantation.

Every year, some 45,000 patients undergo bone marrow or peripheral blood progenitor cell transplantation for the treatment of a variety of diseases, including leukemia, lymphoma, and immunodeficiency. Blood cell transplantation may also one day help people with diabetes better tolerate islet cell transplants without the need for prolonged use of powerful immunosuppressive drugs. In addition, transplantation of blood-forming stem cells, also called hematopoietic stem cells, may prove useful in halting the autoimmune process that causes type 1 diabetes.

The success of bone marrow and blood cell transplants depends on the ability of intravenously infused hematopoietic stem cells, which normally reside predominantly in the bone marrow, to accurately and efficiently migrate from the blood to the marrow of the transplant recipient and, once there, to repopulate their pool of mature blood cells.

In studying mice that lack the transcription factor early growth response gene (EGR-1), a team led by Amy Wagers, Ph.D., found that hematopoietic stem cells in the marrow of these animals divided about twice as often as stem cells in mice with the gene. Mice lacking EGR-1 also had higher numbers of such stem cells circulating in their blood.

The paper, published in the April issue of Cell Stem Cell, is the first to identify EGR-1 as a regulator of hematopoietic stem cell migration and proliferation. The transcription factor has already been identified as a tumor suppressor.

“The transcription factor EGR-1 is important in both of these processes,” said Wagers, Principal Investigator in the Joslin Section on Developmental and Stem Cell Biology, principal faculty member at the Harvard Stem Cell Institute and Assistant Professor of Pathology at Harvard Medical School. “This factor gives us a handle on the discovery of new pathways that regulate the movement of stem cells.”

The knowledge that EGR-1 suppression increases blood-forming stem cell production in the marrow and movement into the bloodstream suggests “a unique opportunity to target this pathway” to manipulate stem cell activity in the context of clinical bone marrow transplantation, the paper says.

“The process of cell migration is critical,” Wagers said. Migration of hematopoietic stem cells from the blood to the marrow is essential for effective transplantation, and the reverse process of migration from the marrow to the blood – an event called “mobilization” – is increasingly exploited for the collection of donor cells for transplant.

“By figuring out in future studies which genes this transcription factor is regulating we can find new ways, by targeting those genes, to enhance stem cell mobilization in people whose stem cells don’t mobilize well,” she said.

Bone marrow transplant patients are also vulnerable to infections in the period post-transplant when they may have insufficient numbers of blood cells. A mechanism to speed the recovery of normal levels of circulating blood cells, based on manipulations of EGR-1, would be beneficial in this manner as well, the paper points out.

Source: Joslin Diabetes Center

Explore further: Study identifies first-ever human population adaptation to toxic chemical, arsenic

add to favorites email to friend print save as pdf

Related Stories

New study shows safer methods for stem cell culturing

23 hours ago

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

Appeals court considering warrantless cellphone tracking

Feb 24, 2015

(AP)—Now that the cellphone in your pocket can be used to track your movements, federal appeals judges in Atlanta are considering whether investigators must get a search warrant from a judge to obtain cellphone tower tracking ...

Engineers put the 'squeeze' on human stem cells

Feb 10, 2015

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

Recommended for you

Lifeline extended for critically endangered porpoise

1 hour ago

Mexico's recent decision to buy-out gillnet fisheries in the upper Gulf of California may give one of the world's rarest species the breathing space it needs to survive. Time is still ticking, but the move ...

New 'enigma' moth helps crack evolution's code

1 hour ago

Aenigmatinea glatzella – which has iridescent gold and purple wings – is a 'living dinosaur' that represents an entirely new family of primitive moths. This is the first time since the 1970s that a new ...

Hundreds of starving koalas killed in Australia

4 hours ago

Close to 700 koalas have been killed off by authorities in southeastern Australia because overpopulation led to the animals starving, an official said Wednesday, sparking claims of mismanagement.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.