The not-so-digital future of digital signal processing

Apr 07, 2008

Fungi processing audio signals. E. Coli storing images. DNA acting as logic circuits. It’s possible, and in some cases, it’s already happened. In any event, performing digital signal processing using organic and chemical materials without electrical currents could be the wave of the future — or so argue Sotirios Tsaftaris, research professor of electrical engineering and computer science, and Aggelos Katsaggelos, Ameritech Professor of Electrical Engineering and Computer Science, in their recently published “point of view” piece in the Proceedings of the IEEE (Institute of Electrical and Electronics Engineers.)

Digital signal processing uses mathematics and other techniques to manipulate signals like visual images and sound waves after those signals have been converted to a digital form. This processing can enhance images and compress data for storage and transmission, and such processing chips are found in cell phones, iPods, and HD TVs.

But over the past 10 years, scientists and engineers around the world have experimented with performing signal processing using different materials. In their piece, Tsaftaris and Katsaggelos describe these experiments while stirring the engineering community towards “a possible not-so-electronic future” of digital signal processing.

For example, scientists and engineers have shown that certain chemicals, when mixed in a solution, don’t react until light is projected through them. So if you project light through a transparency image, these chemicals can record the image. When the chemicals are stimulated by light and controlled by the acidity of the mixture, basic image transformations like contour enhancement can happen.

But such processing tasks extend beyond chemicals to organic materials. Artist/scientist Cameron Jones found that out after he used audio CDs as substrates to grow fungi. He put the fungi-laced CDs in a CD player and found that the optically recorded sound was distorted by the fungi — and the fungi growth patterns were dependent on the optical grooves recorded on the CD.

“The bacteria reacted to the recorded information, and the audio track was ‘processed’ by the grown fungus,” Tsaftaris says. “That is essentially bacteria signal processing.”

Using bacteria to process signals has even spurred a competition – the International Genetically Engineered Machine Competition at the Massachusetts Institute of Technology, where undergraduate students compete to design biological systems that can perform simple computations. In 2005, a group modified E. coli cells to react to light, and the students created a layer of that bacteria that could perform edge detection of an image – a basic processing task.

Tsaftaris’s and Katsaggelos’s research includes studying the use of DNA for digital signal processing. DNA strands can be used as input and processing elements, and, it turns out, DNA is an excellent data storage medium. Digital samples can be recorded onto DNA, which can be kept in a liquid form in test tubes to save space. That DNA can also be easily replicated using common laboratory techniques, and such a database could be easily searchable, no matter how large it is.

“It becomes a very attractive solution,” Tsaftaris says.

Though science is still years away from this possibility, engineers have created useful algorithms in their pursuit of the technology. Such algorithms have been used, for example, to better detect disease. But Tsaftaris hopes for a day when organic digital signal processing will allow for the implementation of the so-called “fast Fourier transform” — a widely-used method of extracting useful information from sampled signals that Tsaftaris calls the “holy grail” of DNA signal processing.

“The cost and delivery time of DNA synthesis is being reduced exponentially, this making data input elegant and economical,” Tsaftaris and Katsaggelos write in the paper. But in the meantime, “don’t forget to feed the bacteria that nurture your precious jazz collection.”

Source: Northwestern University

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Does germ plasm accelerate evolution?

Apr 14, 2014

Scientists at The University of Nottingham have published research in the leading academic journal Science that challenges a long held belief about the way certain species of vertebrates evolved.

Synthetic gene circuits pump up cell signals

Apr 08, 2014

(Phys.org) —Synthetic genetic circuitry created by researchers at Rice University is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated ...

Amino acid fingerprints revealed in new study

Apr 06, 2014

Some three billion base pairs make up the human genome—the floor plan of life. In 2003, the Human Genome Project announced the successful decryption of this code, a tour de force that continues to supply ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Soylent
5 / 5 (1) Apr 07, 2008
The head-line makes no sense. "Not so electronic..." perhaps?
superhuman
5 / 5 (1) Apr 07, 2008
Thats just silly, living organisms wont be better in signal processing cause of 3 major problems - reliability and reproducibility and costs.

The real promise lies in combining electronics (IT included), physics, chemistry, nanotechnology and molecular biology in a way that will take advantage of the best qualities of each of them.
The power of electronics (and IT) is cheap and reliable digital information processing and human mind interface.
The power of molecular biology is compatibility with living organisms, parallelism, robustness and immense possibilities.
Physics, chemistry and nanotechnology should provide an interface to link electronics and molecular biology together.

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...