New regulatory circuit identified for aggressive, malignant brain tumor

Apr 07, 2008

Research using a newly developed algorithm has significantly advanced understanding of the molecular events associated with the most common primary brain tumor in adults, human glioblastoma (GBM). The research, published by Cell Press in the April issue of the journal Cancer Cell, validates known genetic aberrations and identifies events not previously linked with GBM, thereby elucidating new directions for potential therapeutic strategies.

GBM is a devastating neurological cancer that is characterized by widespread invasion, robust angiogenesis and a stubborn resistance to conventional and targeted treatments. Previous research has implicated a long and highly complex list of genes in GBM pathogenesis, emphasizing the need for a systemic prioritization that would separate relevant target genes from bystanders and provide detailed knowledge of the complex interactions between multiple disrupted genes and downstream targets.

Dr. Lynda Chin from Dana-Farber Cancer Institute, Dr. Cameron Brennan from Memorial Sloan-Kettering Cancer Center and their colleagues used a high-resolution genome topography scan (GTS) algorithm to both define and rank the patterns of genomic alterations associated with GBM in primary samples and cell lines. Using this new methodology, the researchers discovered an unanticipated co-deletion pattern among closely related INK genes in the GBM oncogenome.

Specifically, the researchers identified a frequent co-deletion of p18INK4C and p16INK4A, a pattern unique to glioblastoma. Functional reconstitution of p18INK4C in GBM cells lacking both p16INK4A and p18INK4C resulted in impaired cell cycle progression and tumorigenic progression. Depletion of p18INK4C in p16INK4A-deficient primary glial cells or established GBM cells enhanced tumorigenicity while acute suppression of p16INK4A in primary glial cells induced an increase in p18INK4C. “These results uncover an unanticipated tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate glial cell proliferation,” concludes Dr. Chin.

“This study also demonstrates that GTS can address one critical need in the development of a functional map of GBM genetic targets: namely, to prioritize those genomic alterations that are likely to be of importance from among those that are more likely to be bystanders of the cancer process,” offers Dr.Brennan. “Downstream functional validation of high probability candidates should yield novel GBM genes and potential targets for therapeutic intervention.”

Source: Cell Press

Explore further: Generation of tanners see spike in deadly melanoma

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

13 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

15 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

15 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Recommended for you

Generation of tanners see spike in deadly melanoma

10 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

11 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

23 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments : 0