'Healing clays' show promise for fighting deadly MRSA superbug infections, other diseases

Apr 07, 2008
Clay Minerals
Minerals from clay could provide a source of powerful antimicrobials for fighting deadly MRSA infections and other diseases. Photo credit: Arizona State University, John C. Phillips

Mud may be coming to a medicine cabinet or pharmacy near you. Scientists in Arizona report that minerals from clay could form the basis of a new generation of inexpensive, highly-effective antimicrobials for fighting MRSA infections that are moving out of health care settings and into the community. These “superbugs” are increasingly resistant to multiple antibiotics and cause thousands of deaths each year.

Unlike conventional antibiotics that are often administered by injection or pills, the so-called “healing clays” could be used as rub-on creams or ointments to keep MRSA infections from spreading, the researchers say. The clays also show promise against a wide range of other harmful bacteria, including those that cause skin infections and food poisoning, the scientists add. Their study, one of the first to explore the antimicrobial activity of natural clays in detail, was presented today at the 235th national meeting of the American Chemical Society.

Clays have been used for thousands of years as a remedy for infected wounds, indigestion, and other health problems, either by applying clay to the skin or eating it. Today, clays are commonly used at health spas in the form of mud baths and facials. Armed with new investigative tools, researchers are beginning to explore their health claims scientifically.

“Clays are little chemical drug-stores in a packet,” said study co-leader Lynda Williams, Ph.D., a geochemist at Arizona State University in Tempe. “They contain literally hundreds of elements. Some of these compounds are beneficial but others aren’t. Our goal is to find out what nature is doing and see if we can find a better way to kill harmful bacteria.”

In the new study, funded by the National Institutes of Health, Willams and her colleagues collected more than 20 different clay samples from around the world to investigate their antibacterial activities. In collaboration with study co-leader Shelley Haydel, Ph.D., a microbiologist with Arizona State, the researchers tested each of the clays against several different bacteria known to cause human diseases. These bacteria include MRSA (methicillin-resistant Staphylococcus aureus), Mycobacterium ulcerans (a microbe related to the tuberculosis bacterium that causes a flesh-eating disease known as Buruli ulcer), as well as E. coli and Salmonella (which cause food poisoning). The researchers identified at least three clays that killed or significantly reduced the growth of these bacteria.

The researchers are working to identify the specific compounds in the clays that may be responsible for its antibacterial activity. Using electron and ion microscopy, the researchers are also exploring how these antibacterial clays interact with the cell membranes of the bacteria in order to find out how they kill.

Williams and Haydel are continuing to test new clay samples from around the world to determine their germ-fighting potential. They hope that the more promising clays will be developed into a skin ointment or pill to fight a variety of bacterial infections or possibly as an agricultural wash to prevent food poisoning. Several companies have expressed interest in forming partnerships to develop the clays as antimicrobial agents, the scientists say.

But ordinary mud can contain dangerous bacteria as well as toxic minerals like arsenic and mercury, the researchers point out. Until healing clays are developed that are scientifically proven, which could take several years, handwashing and other proper hygiene techniques may be your best bet for keeping MRSA and other harmful bacteria at bay, they say.

Source: American Chemical Society

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Better water supply in Karst areas

Oct 13, 2014

Drinking water is scarce in the Indonesian region of Gunung Kidul. In this karst area, rainwater quickly drains away into the ground. It accumulates in an underground cave system and flows into the ocean ...

Oldest biodiversity found in Gabonese marine ecosystem

Jun 27, 2014

Researchers from the CNRS and the Université de Poitiers, working in collaboration with teams from the Université de Lille 1, Université de Rennes 1, the French National History Museum and Ifremer, have ...

Iron-reducing bacteria could detoxify chromium

Jun 18, 2014

Hexavalent chromium is a major environmental contaminant at several Department of Energy (DOE) sites as well as other sites around the world. Iron-reducing bacteria can convert the oxidized form of iron in ...

Recommended for you

Growing a blood vessel in a week

19 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

22 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0