T-REX is monster light source with multiple applications

Apr 04, 2008
T-REX is monster light source with multiple applications
T-REX schematics.

When it comes to laser-based light sources, there are few brighter than T-REX, an LLNL project developed jointly by the NIF & Photon Science Principle Directorate and the Physical Sciences Directorate.

Technically known as the Thomson-Radiated Extreme X-ray Source, T-REX is an advanced, laser-based light source in which novel, energetic, picosecond laser pulses are scattered from relativistic electrons to produce monochromatic, highly collimated, tunable X-rays and gamma-rays.

The system will be able to study isotopes, allowing researchers to address challenges in homeland and international security, nonproliferation, advanced nuclear power systems and nuclear waste identification. For example, in the Department of Homeland Security's FINDER project for high-confidence detection of nuclear materials to enhance port security. Addressing these national security missions also may also lead to new possibilities for medical and industrial applications of isotope-specific imaging.

T-REX achieved megaelectronvolts (MeV) class first light late last month. On March 26, its 10 picosecond electron beam had been powered up to 120 MeV and collided with UV laser photons, and was used to produce gamma-ray energy of .776 MeV, making it the brightest such instrument in the world in this energy range.

"We are still working on verifying the absolute record brightness of the source," said Chris Barty, program director for the Lab's Photon Science and Applications Program.

"But without a doubt, the ~0.75 MeV radiation produced by T-REX is unique in the world with respect to its brightness, spectral purity, tunability, pulse duration and laser-like beam character," he said.

The system builds on a past Livermore project called Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures (PLEIADES), which was funded by the Laboratory Directed Research and Development (LDRD) Program.

In 2003, the PLEIADES system generated record pulses of 70-kiloelectronvolts (keV) X-rays. Traditionally, beams in this particular energy regime are created in synchrotron facilities.

According to Barty, "With its MeV-range capabilities, T-REX's peak brightness will be up to 10 orders of magnitude greater than current third-generation synchrotron light sources."

Bright gamma-ray pulses tuned to specific nuclear energy levels may be used to detect specific nuclei and isotopes, through a process called nuclear resonance fluorescence, first described by Edward Teller in 1948.

Nearly all nuclei have a set of nuclear "fingerprints" — several photon-excited states unique to individual isotopes. When a photon with the defined energy hits a targeted nucleus, the photon is absorbed. The excited nucleus then decays, radiating photons of the characteristic energy in all directions. The absorption of resonant photons as well as the emitted energy spectrum can be used to identify the nuclear species or isotope of the target.

The Department of Homeland Security's Domestic Nuclear Detection Office is funding research to explore this imaging and detection capability. The proposed system, called fluorescence imaging in the nuclear domain with extreme radiation (FINDER), could be used to image the isotopic composition of materials inside well-shielded objects, such as cargo containers moving through an inspection terminal. If successful, a FINDER system based on T-REX technology could provide a solution to the challenge of detecting concealed highly enriched uranium.

Barty added that his team is pursuing dynamic applications for T-REX, such as capturing "isotope snapshots" of the movement of materials with 100-billionth of a second shutter speed.

"It's a new area that may very well have a large impact on the Lab's core national security missions," said Barty.

Source: Lawrence Livermore National Laboratory

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Crashing the size barrier

Nov 18, 2009

Like surfers on monster waves, electrons can ride waves of plasma to very high energies in a very short distance. Scientists have proven that plasma acceleration works. Now they're developing it as a way to ...

Recommended for you

And so they beat on, flagella against the cantilever

13 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

16 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

18 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

toyo
not rated yet Apr 04, 2008
"10 orders of magnitude greater than current third-generation synchrotron light sources."?
Isn't there any vetting of the news items before they get put on the website?