Study finds concerns with biofuels

Mar 31, 2008

Biofuels are widely considered one of the most promising sources of renewable energy by policy makers and environmentalists alike. However, unless principles and standards for production are developed and implemented, certain biofuels will cause severe environmental impacts and reduce biodiversity – the very opposite of what is desired.

Corn-based ethanol is currently the most widely used biofuel in the United States, but it is also the most environmentally damaging among crop-based energy sources. A new article published in Conservation Biology, a publication of the Society for Conservation Biology, qualitatively contrasts major potential sources of biofuels, including corn, grasses, fast-growing trees and oil crops. The study highlights their relative impacts on the environment in terms of water and fertilizer use and other criteria to calculate the environmental footprint of each crop.

“The central goals of any biofuel policy must minimize risks to biodiversity and to our climate,” says lead author Martha Groom of the University of Washington. She recommends the further use of algae and fast-growing trees as biofuel sources because they yield more fuel per acre than any feedstocks currently being pursued.

As well as comparing potential biofuel feedstocks, the study also recommends a number of major principles for governing the development of environmentally friendly biofuels. Feedstocks should be grown according to sustainable and environmentally safe agricultural practices with minimal ecological footprints (the area of land required to grow and support sufficient amounts of the crop). In particular, emphasis should be placed on biofuels that can sequester carbon or have a negative or zero carbon balance.

“While some biofuels may be an improvement over traditional fuels, we believe we should focus much more on the biofuels of the future that can be developed in small spaces, rather than extensively on crop lands,” explains Groom. “We also must shun biofuels that are grown by clearing biologically-rich habitats, such as tropical rainforests, as has occurred with oil palm and some other biofuels.” The study was co-authored by Elizabeth Gray, the director of science for The Nature Conservancy’s Washington state program, and Patricia Townsend, a Ph.D. candidate in the Department of Biology at UW.

Source: Wiley

Explore further: Researchers offer taphonomic degradation processes for mammalian hair

add to favorites email to friend print save as pdf

Related Stories

Turning humble seaweed into biofuel

18 hours ago

The sea has long been a source of Norway's riches, whether from cod, farmed salmon or oil. Now one researcher from the Norwegian University of Science and Technology (NTNU) researcher hopes to add seaweed ...

Researchers pump up oil accumulation in plant leaves

Oct 07, 2014

Increasing the oil content of plant biomass could help fulfill the nation's increasing demand for renewable energy feedstocks. But many of the details of how plant leaves make and break down oils have remained ...

Study shows how giant clams harness the sun

Oct 02, 2014

Evolution in extreme environments has produced life forms with amazing abilities and traits. Beneath the waves, many creatures sport iridescent structures that rival what materials scientists can make in ...

Recommended for you

New feather findings get scientists in a flap

3 hours ago

Scientists from the University of Southampton have revealed that feather shafts are made of a multi-layered fibrous composite material, much like carbon fibre, which allows the feather to bend and twist to ...

User comments : 0