Two new star systems are first of their kind ever found

Mar 31, 2008
Two new star systems are first of their kind ever found
Ohio State University astronomers and their colleagues took this image of the dwarf galaxy Holmberg IX with the Large Binocular Telescope. The arrow indicates the approximate location of the newly discovered star system. Image courtesy of Ohio State University

Astronomers have spied a faraway star system that is so unusual, it was one of a kind -- until its discovery helped them pinpoint a second one that was much closer to home.

In a paper published in a recent issue of the Astrophysical Journal Letters, Ohio State University astronomers and their colleagues suggest that these star systems are the progenitors of a rare type of supernova.

They discovered the first star system 13 million light years away, tucked inside Holmberg IX, a small galaxy that is orbiting the larger galaxy M81. They studied it between January and October 2007 with the Large Binocular Telescope (LBT) on Mt. Graham in Arizona.

Two new star systems are first of their kind ever found
Ohio State University astronomers and their colleagues have discovered a new type of star system, one that may be the progenitor of a rare type of supernova. The star system is called a "yellow supergiant eclipsing binary" -- it contains two very bright, massive yellow stars that are very closely orbiting each other. In fact, the stars are so close together that a large amount of stellar material is shared between them, so that the shape of the system resembles a peanut. Image by Kevin Gecsi, courtesy of Ohio State University.

The star system is unusual, because it’s what the astronomers have called a “yellow supergiant eclipsing binary” -- it contains two very bright, massive yellow stars that are very closely orbiting each other. In fact, the stars are so close together that a large amount of stellar material is shared between them, so that the shape of the system resembles a peanut.

In a repeating cycle, one star moves to the front and blocks our view of the other. From Earth, the star system brightens and dims, as we see light from two stars, then only one star.

The two stars in this system appear to be nearly identical, each 15 to 20 times the mass of our sun.

José Prieto, Ohio State University graduate student and lead author on the journal paper, analyzed the new star system as part of his doctoral dissertation. In his research, he scoured the historical record to determine whether his group had indeed found the first such binary.

To his surprise, he uncovered another one a little less than 230,000 light years away in the Small Magellanic Cloud, a small galaxy that orbits our own Milky Way.

The star system had been discovered in the 1980s, but was misidentified. When Prieto re-examined the data that astronomers had recorded at the time, he saw that the pattern of light was very similar to the one they had detected outside of M81. The stars were even the same size -- 15 to 20 times the mass of the sun -- and melded together in the same kind of peanut shape. The system was clearly a yellow supergiant eclipsing binary.

“We didn’t expect to find one of these things, much less two,” said Kris Stanek, associate professor of astronomy at Ohio State. “You never expect this sort of thing. But I think this shows how flexible you have to be in astrophysics. We needed the 8.4-meter LBT to spot the first binary, but the second one is so bright that you could see it with binoculars in your back yard. Yet, if we hadn’t found the first one, we may never have found the second one.”

“It shows that there are still valuable discoveries hidden in plain sight. You just have to keep your eyes open and connect the dots.”

The find may help solve another mystery. Of all the supernovae that have been studied over the years, two have been linked to yellow supergiants -- and that’s two more than astronomers would expect.

Prieto explained why. Over millions of years, a star will burn hotter or cooler as it consumes different chemical elements in its core. The most massive stars swing back and forth between being cool red supergiants or hot blue ones. They spend most of their lives at one end of the temperature scale or the other, but spend only a short time in-between, where they are classified as yellow. Most stars end their life in a supernova at the red end of the cycle; a few do at the blue end. But none do it during the short yellow transitional phase in between.

At least, that’s what astronomers thought.

Prieto, Stanek, and their colleagues suspect that yellow binary systems like the ones they found could be the progenitors of these odd supernovae.

“When two stars orbit each other very closely, they share material, and the evolution of one affects the other,” Prieto said. “It’s possible two supergiants in such a system would evolve more slowly, and spend more time in the yellow phase -- long enough that one of them could explode as a yellow supergiant.”

The discovery of this yellow supergiant binary system is just the first result of a long-term LBT project to monitor stellar variability in the nearby universe. That project is led by Ohio State professor of astronomy, Chris Kochanek. He and Rick Pogge, also a professor of astronomy, are coauthors on the paper in Astrophysical Journal Letters.

Source: Ohio State University

Explore further: Far from home: Wayward cluster is both tiny and distant

add to favorites email to friend print save as pdf

Related Stories

The electric eye of Cyclone Bansi

Jan 28, 2015

Though this image may look like they come from a science fiction movie, it is in fact a photograph of tropical cyclone Bansi as seen at night by astronauts on the International Space Station (ISS). The image ...

Thermal memory thrives at extremely high temperatures

Jan 07, 2015

(Phys.org)—While the performance of electronic memory devices degrades at high temperatures, a newly proposed memory actually requires temperatures in excess of 600 K to operate. Called NanoThermoMechanical ...

New image brings galaxy diversity to life

Jan 06, 2015

A compelling new image from Gemini Observatory peers into the heart of a group of galaxies (VV166) traveling through space together. The variety of galactic forms range from a perfect spiral, to featureless ...

New instrument reveals recipe for other Earths

Jan 05, 2015

How do you make an Earth-like planet? The "test kitchen" of Earth has given us a detailed recipe, but it wasn't clear whether other planetary systems would follow the same formula. Now, astronomers have found ...

Image: Hubble sees an ancient globular cluster

Jan 05, 2015

This image captures the stunning NGC 6535, a globular cluster 22,000 light-years away in the constellation of Serpens (The Serpent) that measures one light-year across.

Recommended for you

Far from home: Wayward cluster is both tiny and distant

20 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

An old-looking galaxy in a young universe

Mar 02, 2015

A team of astronomers, led by Darach Watson, from the University of Copenhagen used the Very Large Telescope's X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe ...

Giant methane storms on Uranus

Mar 02, 2015

Most of the times we have looked at Uranus, it has seemed to be a relatively calm place. Well, yes its atmosphere is the coldest place in the solar system. But, when we picture the seventh planet in our ...

Where do stars form in merging galaxies?

Mar 02, 2015

Collisions between galaxies, and even less dramatic gravitational encounters between them, are recognized as triggering star formation. Observations of luminous galaxies, powered by starbursts, are consistent ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

earls
not rated yet Apr 01, 2008
With the stars being so close together, what's the dominate force in this situation? Electromagnetism or gravity?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.