Neurons hard wired to tell left from right

Mar 31, 2008

It's well known that the left and right sides of the brain differ in many animal species and this is thought to influence cognitive performance and social behaviour. For instance, in humans, the left half of the brain is concerned with language processing whereas the right side is better at comprehending musical melody.

Now researchers from UCL publishing their work in the open access journal Neural Development have pinpointed for the first time the left/right differences in how brains are wired at the level of individual cells. To do this, a research team led by Stephen Wilson looked at left and right-sided neurons (nerve cells) in a part of the brain called the habenula.

By causing habenular neurons to produce a bright green fluorescent protein they saw that they form remarkable "spiral-shaped" axons, the long nerve fibres that act as the nervous system's transmission lines.

"It's clear that the left and right halves of the brain process different types of information but almost nothing is known about the differences in the brain's circuitry which achieve this" says Wilson. "One possibility is that totally different types of neuron might be found on the left and right. Alternatively, both sides could contain the same building blocks but put them together in different ways".

The researchers saw that there are two types of habenular neuron and both types can be found on both left and right sides. However, whilst most left-sided cells have spiral axons shaped into a domed crown, such neurons are not very common on the right. Instead, most right-sided cells form flat, shallow spirals, and these are formed only occasionally on the left.

"In the same way that an engineer can make different electronic circuits from the same set of electronic components, so the left and right halves of the brain use the same types of neuron but in different combinations" explains Isaac Bianco, the student who did this work as part of his PhD studies.

The left and right habenular circuits both connect to the same part of the brain and the researchers found that this target can either combine signals from the left and right or handle them independently.

"Even though language is processed largely on the left side of the human brain, people don't speak with only one half of their mouth. The brain must contain circuits which take information from the left or right and then send it on to targets on both sides of the body" says Wilson.

Source: BioMed Central

Explore further: Scientists discover gene controlling muscle fate

add to favorites email to friend print save as pdf

Related Stories

Five ways the superintelligence revolution might happen

Sep 26, 2014

Biological brains are unlikely to be the final stage of intelligence. Machines already have superhuman strength, speed and stamina – and one day they will have superhuman intelligence. This is of course ...

Wearable clip tells parents, coach about head impact

Sep 05, 2014

According to the U.S. Centers for Disease Control and Prevention, a concussion is a type of injury caused by a bump, blow, or jolt to the head that can change the way your brain normally works. Concussions ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Recommended for you

Scientists discover gene controlling muscle fate

16 minutes ago

Scientists at the University of New Mexico have moved a step closer to improving medical science through research involving muscle manipulation of fruit flies. They discovered in the flight muscles of Drosophila ...

Study clues to aging bone loss

21 minutes ago

In Canada, bone fractures due to osteoporosis affect one in three women and one in five men over their lifetimes, costing the health care system more than $2.3 billion a year.

Sweat-eating bacteria may improve skin health

14 hours ago

Bacteria that metabolize ammonia, a major component of sweat, may improve skin health and some day could be used for the treatment of skin disorders, such as acne or chronic wounds. In a study conducted by AOBiome LLC, human ...

User comments : 0