Scientists find a key culprit in stroke brain cell damage

Mar 27, 2008

Researchers have identified a key player in the killing of brain cells after a stroke or a seizure. The protein asparagine endopeptidase (AEP) unleashes enzymes that break down brain cells' DNA, scientists at Emory University School of Medicine have found. The results are published in the March 28 issue of the journal Molecular Cell.

Finding drugs that block AEP may help doctors limit permanent brain damage following strokes or seizures, says senior author Keqiang Ye, PhD, associate professor of pathology and laboratory medicine at Emory.

When a stroke obstructs blood flow to part of the brain, the lack of oxygen causes a buildup of lactic acid, the same chemical that appears in the muscles during intense exercise. In addition, a flood of chemicals that brain cells usually use to communicate with each other over-excites the cells. Epileptic seizures can have similar effects.

While some brain cells die directly because of lack of oxygen, others undergo programmed cell death, a normal developmental process where cells actively destroy their own DNA.

"The mystery was: how do the acidic conditions trigger DNA damage?" Ye says. "This was a very surprising result because previously we had no idea that AEP was involved in this process."

AEP is a protease, a class of enzymes that cuts other proteins. AEP is also called legumain because of its relatives in plants, and is found at its highest levels in the kidney, says Ye.

He and his co-workers had suspected that another class of proteases called caspases, involved in programmed cell death, controlled DNA damage after a stroke.

At first, he and postdoctoral fellow Zhixue Liu, PhD, thought the results of a critical experiment that led them to AEP were an aberration because the experiment was performed under overly acidic conditions.

"But if you can repeat the mistake, it's not a mistake," Dr. Ye says, adding that follow-up work allowed them to set aside caspases as suspects and focus on AEP.

The researchers began by looking for proteins that stick to another protein called PIKE-L, which they previously had studied because of its ability to interfere with programmed cell death in brain cells.

They discovered that PIKE-L sticks to SET, a protein that other scientists had found regulates DNA-eating enzymes involved in programmed cell death. In addition, PIKE-L appears to protect SET from attack by AEP.

Liu and Ye found that a drug scientists use to mimic the acidic overload induced by stroke activates AEP, driving it to break down DNA in brain cells. In mice genetically engineered to lack AEP, both the drug and an artificial stroke resulted in reduced DNA damage and less brain cell death than in regular mice.

This outcome suggests "that AEP might be the major proteinase mediating this devastating process," the authors wrote.

Source: Emory University

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

7 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

9 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Atomic trigger shatters mystery of how glass deforms

9 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

US company sells out of Ebola toys

17 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0