Electron spin and orbits in carbon nanotubes are coupled

Mar 26, 2008
Electron spin and orbits in carbon nanotubes are coupled
In a carbon nanotube, electrons can orbit around the tube either clockwise or counterclockwise. Conventional wisdom has been that the spin property of the electron would be the same either way, but Cornell research has shown otherwise. Credit: Cornell University

Researchers hoping to use carbon nanotubes for quantum computing -- in which the spin of a single electron would represent a bit of data -- may have to change their approaches, according to new Cornell research.

Cornell physicists have found that the spin of an electron in a carbon nanotube is coupled -- that is, interacts with -- the electron's orbit. The finding means researchers will have to change the way they read out or change spin, but offers a new way to manipulate the spin, by manipulating the orbit.

Electron spin and orbits in carbon nanotubes are coupled
At left, the expected result when a magnetic field is applied to a single electron orbiting a carbon nanotube. At right, the result of Cornell experiments shows a difference at zero field, indicating the states are not symmetrical as previously believed.

The research is reported in the March 27 issue of the journal Nature by Cornell professors of physics Paul McEuen and Daniel Ralph and former Cornell researchers Shahal Ilani, now at the Weizmann Institute of Science in Israel, and Ferdinand Kuemmeth, now at Harvard University.

Carbon nanotubes are tiny cylinders whose walls are made of carbon atoms arranged in connected hexagons, sort of like a rolled up tube of chicken wire. Rather than orbiting individual atoms, free electrons in a nanotube orbit around the circumference of the tube. Meanwhile, the electron going around that circle can have its spin oriented in two possible directions. Until now, physicists believed that the four possible states of an electron -- with spin up or down and orbit clockwise or counterclockwise -- must be perfectly equivalent.

To test this, the researchers used the Cornell NanoScale Science and Technology Facility (CNF) to create a tiny device in which a carbon nanotube about 5 nanometers (nm -- a nanometer is a billionth of a meter, about the length of three atoms in a row) in diameter and 500 nm long was mounted between two electrodes above a silicon structure that allows the application of varying electrical charges to the tube. The design of the device made it possible to create quantum dots containing a small number of electrons, all the way down to a single electron.

By applying a magnetic field along the axis of the tube and measuring the current flow through the tube, the researchers could determine the energy levels of electrons in the four possible combinations of spin and orbit and found that changing the direction of orbit changes the energy. The orbit of the electron affects its spin and vice versa.

"This doesn't overrule using nanotubes in quantum computing, but it defines new rules for designing them in nanotubes," Ilani said. "It is also interesting from the fundamental physics point of view, because it is the unique cylindrical topology of nanotubes that allows the electrons to have well-defined orbits and therefore to have this coupling."

The same experiment was performed with "holes" -- places where an electron is missing, creating the equivalent of a positive charge moving around the tube. Again, it had been believed that the energy of a hole would be the same as that of an electron with the same spin, but the experiment showed otherwise.

Source: Cornell University

Explore further: Solving molybdenum disulfide's 'thin' problem

add to favorites email to friend print save as pdf

Related Stories

Firing up the proton smasher

Feb 17, 2015

The Large Hadron Collider is being brought back to life, ready for Run II of the "world's greatest physics experiment". Cambridge physicists are among the army who keep it alive.

How the bicycle got its spokes

Oct 13, 2014

The humble two-wheeler is a miracle of engineering. But just how did we get from the Penny Farthing to Kevlar tyres?

Recommended for you

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (3) Mar 27, 2008
quantum states are not coupled. Spin and energy level are not coupled. They can interact by exchange of photons.
superhuman
not rated yet Mar 30, 2008
Impressive experiment!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.