Evolution of new species slows down as number of competitors increases

Mar 25, 2008

The rate at which new species are formed in a group of closely related animals decreases as the total number of different species in that group goes up, according to new research published in PLoS Biology.

The research team believes these findings suggest that new species appear less and less as the number of species in a region approaches the maximum number that it can support.

In order for new species to thrive, they need to evolve to occupy their own niche in the ecosystem, relying on certain foods and habitats for survival that are sufficiently different from those of other closely related species.

Competition between closely related species for food and habitat becomes more intense the more species there are, and researchers believe this could be the reason for the drop-off in the appearance of new species over time.

Dr. Albert Phillimore, from Imperial College London’s NERC Centre for Population Biology, lead author on the paper, explains: “The number of niches in any given region is finite, and our research supports the idea that the rate of speciation slows down as the number of niches begins to run out.

“In essence, it seems like increased competition between species could place limits on the number of species that evolve.”

The new study used detailed analysis of the family trees, or phylogenies, of 45 different bird families. By examining the rate at which new species have arisen in each of these trees over a period of millions of years, scientists saw that the rate of appearance of new species seemed to be much higher in the early stages of the family tree, compared to more recent lower rates.

For example, when the researchers examined the phylogeny of tit birds they found that some 10 million years ago, species formed rapidly but this rate has slowed over time to perhaps a quarter of the initial rate.

Citation: Phillimore AB, Price TD (2008) Density-dependent cladogenesis in birds. PLoS Biol 6(3): e71. doi:10.1371/journal.pbio.0060071

Source: Public Library of Science

Explore further: Citizen scientists match research tool when counting sharks

add to favorites email to friend print save as pdf

Related Stories

Biologists help solve fungi mysteries

Apr 17, 2014

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

More, bigger wildfires burning western US, study shows

Apr 17, 2014

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

Diverse gene pool critical for tigers' survival

Apr 16, 2014

(Phys.org) —New research by Stanford scholars shows that increasing genetic diversity among the 3,000 or so tigers left on the planet is the key to their survival as a species.

Recommended for you

Citizen scientists match research tool when counting sharks

13 hours ago

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.