MRI: A window to genetic properties of brain tumors

Mar 24, 2008

Doctors diagnose and prescribe treatment for brain tumors by studying, under a microscope, tumor tissue and cell samples obtained through invasive biopsy or surgery. Now, researchers at UCSD School of Medicine have shown that Magnetic Resonance Imaging (MRI) technology has the potential to non-invasively characterize tumors and determine which of them may be responsive to specific forms of treatment, based on their specific molecular properties. The study will be published on line by the Proceedings of the National Academy of Science the week of March 24.

“This approach reveals that, using existing imaging techniques, we can identify the molecular properties of tumors,” said Michael Kuo, M.D., assistant professor of interventional radiology at UCSD School of Medicine. Kuo and colleagues analyzed more than 2,000 genes that had previously been shown to have altered expression in Glioblastoma multiforme (GBM) tumors. They then mapped the correlations between gene expression and MRI features.

The researchers also identified characteristic imaging features associated with overall survival of patients with GBM, the most common and lethal type of primary brain tumor.

The researchers discovered five distinct MRI features that were significantly linked with particular gene expression patterns. For example, one specific characteristic seen in some images is associated with proliferation of the tumor, and another with growth and formation of new blood vessels within the tumor–both of which are susceptible to treatment with specific drugs.

These physiological changes seen in the images are caused by genetic programs, or patterns of gene activation within the tumor cells. Some of these programs are tightly associated with drug targets, so when they are detected, they could indicate which patients would respond to a particular anti-cancer therapy, according to the researchers.

“For the first time, we have shown that the activity of specific molecular programs in these tumors can be determined based on MRI scans alone,” said Kuo. “We were also able to link the MRI with a group of genes that appear to be involved in tumor cell invasion–a phenotype associated with a reduced rate of patient survival.”

Laboratory work that relies on tissue samples is routinely used to diagnose and guide treatment for GBM. However, the biological activity shown may depend on the portion of the tumor from which the tissue sample is obtained. The researchers have shown that MRI could be used to identify differences in gene expression programs within the same tumor.

“Gene expression results in the production of proteins, which largely determine a tumor’s characteristics and behavior. This non-invasive MRI method could, for example, detect which part of a tumor expresses genes related to blood vessel formation and growth or tumor cell invasion,” said Kuo. “Understanding the genetic activity could prove to be a very strong predictor of survival in patients, and help explain why some patients have better outcomes than others.”

Kuo also led a study, published in Nature Biotechnology in May 2007, correlating CT images of cancerous tissue with gene expression patterns in liver tumors. “In the new study, we were able to take a different imaging technology, MRI, and apply it to a totally different tumor type,” he said, noting that the studies open up promising new avenues for non-invasive diagnoses and classification of cancer.

Source: University of California - San Diego

Explore further: Vegetable oil ingredient key to destroying gastric disease bacteria

add to favorites email to friend print save as pdf

Related Stories

Cohesin molecule safeguards cell division

13 minutes ago

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Erosion may trigger earthquakes

14 minutes ago

Researchers from laboratories at Géosciences Rennes (CNRS/Université de Rennes 1), Géosciences Montpellier (CNRS/Université de Montpellier 2) and Institut de Physique du Globe de Paris (CNRS/IPGP/Université Paris Diderot), ...

Laser scanning accurately 'weighs' trees

14 minutes ago

A terrestrial laser scanning technique that allows the structure of vegetation to be 3D-mapped to the millimetre is more accurate in determining the biomass of trees and carbon stocks in forests than current ...

3Qs: Game theory and global climate talks

16 minutes ago

Last week, China and the United States announced an ambitious climate agreement aimed at reducing carbon emissions in both countries, a pledge that marks the first time that China has agreed to stop its growing emissions. ...

Jumping hurdles in the RNA world

19 minutes ago

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

Recommended for you

A hybrid vehicle that delivers DNA

10 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.