FSU researcher's 'mutant' proteins could lead to new treatment for heart disease

Mar 24, 2008

Heart damage due to blocked arteries remains the leading cause of disease and death in the Western world, but a Florida State University College of Medicine researcher is helping to open new pathways toward treating the problem.

Michael Blaber, a professor in the department of biomedical sciences, is researching mutant forms of a human protein that have been shown to help the human body grow new blood vessels to restore blood flow in damaged areas of the heart.

Working with a $264,000, three-year grant from the American Heart Association, Blaber hopes to provide data that will enable the use of the mutant proteins in new treatment methods previously unavailable for patients with advanced “no option’’ heart disease.

“This research offers the potential to treat people who currently are being sent home to die,’’ Blaber said. “We’ve tested a group of mutants in the laboratory with unusual properties of increased stability and activities -- good properties. In some cases it was unexpected, but the results are very promising.’’

Obstructed blood vessels and clogged or blocked arteries typically are treated through angioplasty, the mechanical widening of a vessel, or bypass surgery. Some patients, however, have numerous small blockages that cannot be treated through traditional approaches. In most cases, they are sent home with a predicted life expectancy that, no matter how it’s phrased, sounds like a death sentence.

A new approach to the problem called therapeutic coronary angiogenesis is creating hope through the injection of human fibroblast growth factor protein into affected areas. Improvements with the procedure may arise from the use of mutant forms with increased stability.

Blaber and his research team are creating artificial “mutant’’ proteins in their College of Medicine laboratory that mimic the human proteins used in angiogenic therapy, and with enhanced stability properties. So far, the mutant proteins engineered at the College of Medicine have exhibited potency in stimulating cell growth while simultaneously maintaining greater stability under conditions common to angiogenic therapy.

The work has enormous potential commercial applications and already has drawn the attention of private companies interested in the results Blaber’s lab has achieved and the intellectual properties his studies are generating.

Source: Florida State University

Explore further: Treatment for overactive bladder and irritable bowel syndrome advanced through pioneering research

add to favorites email to friend print save as pdf

Related Stories

Dinosaur footprints set for public display in Utah

50 minutes ago

A dry wash full of 112-million-year-old dinosaur tracks that include an ankylosaurus, dromaeosaurus and a menacing ancestor of the Tyrannosaurus rex, is set to open to the public this fall in Utah.

Fitbit to Schumer: We don't sell personal data

57 minutes ago

The maker of a popular line of wearable fitness-tracking devices says it has never sold personal data to advertisers, contrary to concerns raised by U.S. Sen. Charles Schumer.

Dead floppy drive: Kenya recycles global e-waste

1 hour ago

In an industrial area outside Kenya's capital city, workers in hard hats and white masks take shiny new power drills to computer parts. This assembly line is not assembling, though. It is dismantling some ...

Tissue regeneration using anti-inflammatory nanomolecules

1 hour ago

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Recommended for you

The impact of bacteria in our guts

6 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

7 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

8 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0