FSU researcher's 'mutant' proteins could lead to new treatment for heart disease

Mar 24, 2008

Heart damage due to blocked arteries remains the leading cause of disease and death in the Western world, but a Florida State University College of Medicine researcher is helping to open new pathways toward treating the problem.

Michael Blaber, a professor in the department of biomedical sciences, is researching mutant forms of a human protein that have been shown to help the human body grow new blood vessels to restore blood flow in damaged areas of the heart.

Working with a $264,000, three-year grant from the American Heart Association, Blaber hopes to provide data that will enable the use of the mutant proteins in new treatment methods previously unavailable for patients with advanced “no option’’ heart disease.

“This research offers the potential to treat people who currently are being sent home to die,’’ Blaber said. “We’ve tested a group of mutants in the laboratory with unusual properties of increased stability and activities -- good properties. In some cases it was unexpected, but the results are very promising.’’

Obstructed blood vessels and clogged or blocked arteries typically are treated through angioplasty, the mechanical widening of a vessel, or bypass surgery. Some patients, however, have numerous small blockages that cannot be treated through traditional approaches. In most cases, they are sent home with a predicted life expectancy that, no matter how it’s phrased, sounds like a death sentence.

A new approach to the problem called therapeutic coronary angiogenesis is creating hope through the injection of human fibroblast growth factor protein into affected areas. Improvements with the procedure may arise from the use of mutant forms with increased stability.

Blaber and his research team are creating artificial “mutant’’ proteins in their College of Medicine laboratory that mimic the human proteins used in angiogenic therapy, and with enhanced stability properties. So far, the mutant proteins engineered at the College of Medicine have exhibited potency in stimulating cell growth while simultaneously maintaining greater stability under conditions common to angiogenic therapy.

The work has enormous potential commercial applications and already has drawn the attention of private companies interested in the results Blaber’s lab has achieved and the intellectual properties his studies are generating.

Source: Florida State University

Explore further: New study unravels why common blood pressure medicine can fail

Related Stories

How vitamin C helps plants beat the sun

Jan 05, 2015

While vitamin C in plant chloroplasts is known to help prevent a reduction in growth that plants experience when exposed to excessive light—phenomenon called photo inhibition—how it gets into chloroplasts ...

Stressed yeast paint a picture of Dorian Gray

Jul 02, 2014

We all pass unwanted stuff on to our children—emotional baggage, peculiar habits, unfashionable furniture. Cells do the same thing when they divide; along with their newly replicated genomes and the vital ...

Recommended for you

Caring for blindness: A new protein in sight?

4 minutes ago

Vasoproliferative ocular diseases are responsible for sight loss in millions of people in the industrialised countries. Many patients do not currently respond to the treatment offered, which targets a specific ...

When genes are expressed in reverse

6 minutes ago

Genes usually always be expressed as in Western writing: from left to right on the white canvas of our DNA. So when we speak of the activity of our genome, in fact we are referring to the expression of genes ...

Technique could speed biologic drugs

5 hours ago

Antibodies are specific molecules that can lock onto a particular cellular structure to start, stop or otherwise temper a biological process. Because they are so specific, antibodies are at the forefront ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.