Toward a new generation of vaccines for malaria and other diseases

Mar 24, 2008

Researchers in Colombia, South America, describe a new strategy for designing the next generation of synthetic vaccines that could lead to more effective treatments for fighting malaria, tuberculosis, AIDS and other infectious diseases. These conditions kill more than 17 million people around the world each year. Their study appears in the current issue of ACS’ Accounts of Chemical Research.

Traditional vaccine development involves the use of microorganisms to trigger an immune response by the body. However, this approach can produce unwanted side effects and may be ineffective against microbes with extremely complex infection cycles. Therefore, researchers agree on the need for better vaccine.

In the study, Manuel E. Patarroyo and his son Manuel A. Patarroyo describe a completely new strategy for designing more effective vaccines, which are chemically synthesized in the laboratory without the use of microorganisms. They identified dozens of key protein fragments involved in the complex infection process of the malaria parasite, from which they designed, specifically modified and synthesized chemically some of the most promising malaria vaccine candidates that have been tested to date.

Likewise, identifying the disease-related protein fragments involved in the complex infection process of other transmittable diseases could result in new, more effective vaccines to help fight these diseases, the scientists say. They also note that this innovative approach establishes for the first time the emerging rules for the development of vaccines against diseases scourging humankind.

Source: ACS

Explore further: New method allows for greater variation in band gap tunability

add to favorites email to friend print save as pdf

Related Stories

Cool crystals and hot climates

Jan 16, 2015

A crystalline structure used by a silkworm virus to protect itself from the elements may provide similar protection for human vaccines in challenging tropical climates and remote regions.

Nanotechnology against malaria parasites

Dec 09, 2014

Malaria parasites invade human red blood cells, they then disrupt them and infect others. Researchers at the University of Basel and the Swiss Tropical and Public Health Institute have now developed so-called ...

Has global interdependence made the US vulnerable?

Dec 02, 2014

Risk is everywhere. There's a risk, for example, that volcanic ash will damage aircraft engines. So when a volcano erupted in Iceland in April 2010, concerns about the plume of volcanic ash disrupted air ...

Recommended for you

Pinholes are pitfalls for high performance solar cells

Jan 30, 2015

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.