Therapeutic cloning treats Parkinson's disease in mice

Mar 23, 2008

Research led by investigators at Memorial Sloan-Kettering Cancer Center (MSKCC) has shown that therapeutic cloning, also known as somatic-cell nuclear transfer (SCNT), can be used to treat Parkinson’s disease in mice. The study’s results are published in the March 23 online edition of the journal Nature Medicine.

For the first time, researchers showed that therapeutic cloning or SCNT has been successfully used to treat disease in the same subjects from whom the initial cells were derived. While this current work is in animals, it could have future implications as this method may be an effective way to reduce transplant rejection and enhance recovery in other diseases and in other organ systems.

In therapeutic cloning or SCNT, the nucleus of a somatic cell from a donor subject is inserted into an egg from which the nucleus has been removed. This cell then develops into a blastocyst from which embryonic stem cells can be harvested and differentiated for therapeutic purposes. As the genetic information in the resulting stem cells comes from the donor subject, therapeutic cloning or SCNT would yield subject-specific cells that are spared by the immune system after transplantation.

The new study shows that therapeutic cloning can treat Parkinson’s disease in a mouse model. The scientists used skin cells from the tail of the animal to generate customized or autologous dopamine neurons—the missing neurons in Parkinson’s disease. The mice that received neurons derived from individually matched stem cell lines exhibited neurological improvement. But when these neurons were grafted into mice that did not genetically match the transplanted cells, the cells did not survive well and the mice did not recover.

Source: Memorial Sloan-Kettering Cancer Center

Explore further: Human brain has coping mechanism for dehydration

add to favorites email to friend print save as pdf

Related Stories

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Recommended for you

Human brain has coping mechanism for dehydration

11 hours ago

(HealthDay)—Although dehydration significantly reduces blood flow to the brain, researchers in England have found that the brain compensates by increasing the amount of oxygen it extracts from the blood. ...

User comments : 0