Mars salt deposit discovery points to a new place to hunt for life's ancient traces

Mar 20, 2008
New Clues to Guide Search for Life on Mars
This image provides higher-resolution views of a site where another observation indicates the presence of chloride salt deposits. Image Credit: NASA/JPL-Caltech/University of Arizona/Arizona State University/University of Hawaii

Scientists using a Mars-orbiting camera designed and operated at Arizona State University's Mars Space Flight Facility have discovered the first evidence for deposits of chloride minerals - salts - in numerous places on Mars. These deposits, say the scientists, show where water was once abundant and may also provide evidence for the existence of former Martian life.

A team of scientists led by Mikki Osterloo, of the University of Hawaii, used data from the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter to discover and map the Martian chloride deposits. The Jet Propulsion Laboratory in Pasadena, Calif., manages the Mars Odyssey mission for NASA's Science Mission Directorate.

Developed at Arizona State University, THEMIS is a multi-wavelength camera that takes images in five visual bands and 10 infrared ones. At infrared wavelengths, the smallest details THEMIS can see on the Martian surface are 330 feet (100 meters) wide.

The scientists found about 200 individual places in the Martian southern hemisphere that show spectral characteristics consistent with chloride minerals. These salt deposits occur in the middle to low latitudes all around the planet within ancient, heavily cratered terrain. The team's report appears in the March 21, 2008 issue of the scientific journal Science.

The team includes Philip Christensen, Joshua Bandfield, and Alice Baldridge of Arizona State University; Victoria Hamilton and Scott Anderson of the University of Hawaii; Timothy Glotch of Stony Brook University; and Livio Tornabene of the University of Arizona.

Lead author Osterloo found the sites by looking through thousands of THEMIS images processed to reveal, in false colors, compositional differences on the Martian surface. As she explains, "I started noting these sites because they showed up bright blue in one set of images, green in a second set, and yellow-orange in a third."

Says team member Christensen, "THEMIS gives us a good look at the thermal infrared, the best part of the spectrum for identifying salt minerals by remote sensing from orbit."

When plotted on a global map of Mars, the chloride sites appeared only in the southern highlands, the most ancient rocks on Mars.

Lay of the Land

Christensen goes on to characterize the sites' geological setting. "Many of the deposits lie in basins with channels leading into them," he says. "This is the kind of feature, like salt-pan deposits on Earth, that's consistent with water flowing in over a long time."

Christensen, a Regents' Professor of Geological Sciences at ASU's School of Earth and Space Exploration in the College of Liberal Arts and Sciences, designed THEMIS and is the instrument's principal investigator.

Says Osterloo, "The deposits range in area from about one square kilometer to about 25 square kilometers," or about 0.4 square mile to about 10 square miles. She adds, "Because the deposits appear to be disconnected from each other, we don't think they all came from one big, global body of surface water." Instead, she says, "They could come from groundwater reaching the surface in low spots. The water would evaporate and leave mineral deposits, which build up over years."

The scientists think the salt deposits formed mostly in the middle to late Noachian epoch, a time that researchers have dated to about 3.9 to 3.5 billion years ago. Several lines of evidence suggest Mars then had intermittent periods of substantially wetter and warmer conditions than today's dry, frigid climate.

Looking for Life

Up to now, scientists looking for evidence of past life on Mars have focused mainly on a handful of places that show evidence of clay or sulfate minerals. The reasoning is that clays indicate weathering by water and that sulfates may form by water evaporation.

The new research, however, suggests an alternative mineral target to explore for biological remains. Says Christensen, "By their nature, salt deposits point to a lot of water, which could potentially remain standing in pools as it evaporates." That's crucial, he says. "For life, it's all about a habitat that endures for some time."

There may also be a concentrating effect, Christensen adds. "The deposits lie in what are probably sedimentary basins. If you look upstream, you might find only a trace of organic materials because they're thinly dispersed." But over a long period of time, he explains, "The water flowing into a basin can concentrate the organic materials and they could be well preserved in the salt."

Whether or not the Red Planet ever had life is the biggest scientific question driving Mars research. On Earth, salt has proven remarkably good at preserving organic material. For example, bacteria have been revived in the laboratory after being preserved in salt deposits for millions of years.

NASA is currently studying potential landing sites for its Mars Science Laboratory (MSL), a new-generation rover due for launch in fall 2009. Sites featuring clay deposits number heavily in the short-list of candidate places to send the rover.

Christensen says, "Scientists have studied Martian clay mineral sites for years now, and it's natural they should be considered as targets for the Mars Science Laboratory rover. However, the discovery of chloride minerals in topographic basins within the oldest rocks on Mars should also be considered as an alternative mineralogy for MSL or future rovers to explore."

"This discovery demonstrates the continuing value of the Odyssey science mission, now entering its seventh year," says Jeffrey Plaut, Odyssey project scientist at the Jet Propulsion Laboratory. "The more we look at Mars, the more fascinating a place it becomes."

Source: Arizona State University

Explore further: NASA craft circling Ceres in first visit to dwarf planet

add to favorites email to friend print save as pdf

Related Stories

NASA spacecraft completes 40,000 Mars orbits

Feb 11, 2015

NASA's Mars Reconnaissance Orbiter passed a mission milestone of 40,000 orbits on Feb. 7, 2015, in its ninth year of returning information about the atmosphere, surface and subsurface of Mars, from equatorial ...

Ten interesting facts about asteroids

Feb 03, 2015

At first glance, looking at a bunch of space rocks doesn't sound that exciting. Like, aren't they just a bunch of rubble? What use can they be in understanding the Solar System compared to looking at planets ...

Gully patterns document Martian climate cycles

Jan 28, 2015

Geologists from Brown University have found new evidence that glacier-like ice deposits advanced and retreated multiple times in the midlatitude regions of Mars in the relatively recent past.

Gullies on Vesta suggest past water-mobilized flows

Jan 23, 2015

(—Protoplanet Vesta, visited by NASA's Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its ...

NASA's upcoming Year of the Dwarf Planet

Dec 30, 2014

Together, the space probes Dawn and New Horizons have been in flight for a collective 17 years. One remained close to home and the other departed to parts of the Solar System of which little is known. They ...

Recommended for you

Scanning Earth, saving lives

32 minutes ago

A high-speed camera for monitoring vegetation from space and combating famine in Africa is being adapted to spot changes in human skin cells, invisible to the naked eye, to help diagnose skin diseases like ...

THEMIS camera helps NASA pick site for next Mars lander

3 hours ago

NASA's next Mars space probe, a lander named InSight, is due to touch down on the Red Planet in September 2016 with a mission focused on the planet's internal properties. Its landing place has been chosen ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.