Biologists identify key protein in cell's 'self-eating' function

Mar 11, 2008

Molecular biologists at the University of California, San Diego have found one piece of the complex puzzle of autophagy, the process of “self-eating” performed by all eukaryotic cells -- cells with a nucleus -- to keep themselves healthy.

Their finding, published in the March 11 issue of the journal Developmental Cell, is important because it allows scientists to control this one aspect of cellular autophagy, and may lead to the ability to control other selective “self-eating” processes. This, in turn, could help illuminate autophagy’s role in aging, immunity, neurodegeneration and cancer.

Biologists identify key protein in cell's 'self-eating' function

All eukaryotic cells dispose of bacteria, viruses, damaged organelles and other non-essential components through this self-eating process. A part of the cell called the lysosome engulfs and degrades subcellular detritus. The ability of cells to recycle and reuse the cellular raw materials, as well as to “re-model” themselves in response to changing conditions, allows them to adapt and survive.

Autophagy was first described about 40 years ago, but has recently become a topic of great interest in cell biology because it is linked to cell growth, development aging and homeostasis -- helping cells to maintain a balance among synthesis, degradation and recycling.

The UC San Diego researchers report in their paper that they identified a novel protein called Atg30 (one of 31 required for autophagy-related processes) from the yeast Pichia pastoris, that controls the degradation of a sub-compartment of cells, the peroxisomes.

Peroxisomes generate and dispose of harmful peroxides that are by-products of oxidative chemical reactions.

Different organelles within the cell are degraded by lysosomes when the organelles are damaged or not necessary, said Jean-Claude Farré, the biologist who identified Atg30. The team is investigating peroxisomes, and working to understand how and why they are selected by the lysosome for degradation.

What the biologists found, he said, is that “this new protein can mediate peroxisome selection during pexophagy – that is, it is necessary for pexophagy, but not for other autophagy-related processes.”

Suresh Subramani, a professor of biology who headed the team, said they have established that Atg30 is a “key player” in the selection of peroxisomes for delivery to “the autophagy machinery” for re-cycling.

“For the first time, we can use a protein to control the process,” Subramani said. “It’s an important step in understanding the workings of cells.”

Source: University of California - San Diego

Explore further: Sea star disease strikes peninsula marine centers

add to favorites email to friend print save as pdf

Related Stories

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Recommended for you

Breakthrough in coccidiosis research

11 hours ago

Biological researchers at the Royal Veterinary College (RVC) are a step closer to finding a new cost-effective vaccine for the intestinal disease, coccidiosis, which can have devastating effects on poultry ...

User comments : 0