Researchers characterize novel regulator of chromosome function

Mar 10, 2008

The Stowers Institute's Workman Lab has shed new light on a novel histone acetyltransferase protein complex called ATAC. Acetyltransferases are enzymes that introduce a new acetyl functional group into histone proteins, a process by which all chromosome functions are controlled.

The findings were posted to the Web site of Nature Structural and Molecular Biology yesterday and will appear in a future print edition of the journal.

ATAC is unique as the only acetyltransferase protein complex that contains two distinct acetyltransferase enzymes; one that generally activates processes like gene transcription and DNA repair and another that makes a specific modification thought to alter chromosome structure. ATAC can also assist in the movement of chromosome subunits, called nucleosomes, along DNA.

The work was conducted using the Drosophila, or fruit fly, model — ATAC is present in multicellular organisms, including fruit flies and humans, but not in lower eukaryotes, like yeast.

“We knew that the ATAC complex existed and that it was only present in multicellular organisms, but we did not know all the proteins it contained or what their functions were,” said Tamaki Suganuma, Ph.D., Postdoctoral Research Associate and first author on the paper. “In this work, we were able to identify the protein components of ATAC to gain insight into its functions.”

The improved understanding of ATAC may lead to a better understanding of a number of human diseases.

“We were able to show that in Drosophila, the ATAC complex is essential for development of the embryo to an adult organism,” said Jerry Workman, Ph.D., Investigator and senior author on the publication. “It is likely that ATAC will also be required for development of mammals, including humans, and that by understanding the functions of ATAC we will be better able to pinpoint its role in developmental defects and cancers.”

Having characterized all of the proteins in ATAC, the Workman Lab will now focus on which chromosomal functions it regulates and how these actions contribute to development.

Source: Stowers Institute for Medical Research

Explore further: How do our muscles work? Scientists reveal important new insights into muscle protein

add to favorites email to friend print save as pdf

Related Stories

US northeast braces for flooding after record snow

5 hours ago

Weather forecasters and emergency officials warned Sunday that melting snow would lead to heavy flooding in parts of the US northeast, with hundreds of thousands of people told to brace for fast-rising waters.

How the hummingbird achieves its aerobatic feats

12 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

'Mind the gap' between atomically thin materials

13 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Recommended for you

Dogs hear our words and how we say them

8 hours ago

When people hear another person talking to them, they respond not only to what is being said—those consonants and vowels strung together into words and sentences—but also to other features of that speech—the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.