Switchable nanovalves: pH-sensitive pseudorotaxane as reversible gate for drug nanotransporter

Mar 07, 2008

We encounter valves every day, whether in the water faucet, the carburetor in our car, or our bicycle tire tube. Valves are also present in the world of nanotechnology.

A team of researchers headed by J. Fraser Stoddart and Jeffrey I. Zink at the University of California, Los Angeles, has now developed a new nanovalve. In the journal Angewandte Chemie, the scientists reveal what is special about it: In contrast to prior versions, which only function in organic solvents, this valve operates in an aqueous environment and under physiological conditions—prerequisites for any application as a gate for nanoscopic drug-transport agents, which need to set their cargo free at the right place and time.

In order for pharmaceuticals to affect only the target diseased organ, suitable nanopackaging is required to bring the drug to the target area and release it only there. One example of a good nanoscopic packaging agent is a tiny sphere of porous silica. Its pores can be filled with the drug and closed with tiny controllable valves.

The scientists attached stem-shaped molecules onto the surface of the porous spheres and filled the pores with guest molecules. At neutral to acidic pH values, they stacked cucurbituril molecules onto these “stems”. Cucurbituril is a fat, ring-shaped molecule reminiscent of a pumpkin that has both ends hollowed out. The resulting supramolecular structure, which resembles a skewered pumpkin and is known to chemists as a pseudorotaxane, blocks the pores, so that the guest molecules cannot exit. The nanovalve is closed.

If the pH value is raised into the basic range, however, the interaction between the “pumpkins” and the “skewers” is weakened, and the pumpkins come off, opening the pores. Now the valves are open and the guest molecules can exit.

At this point the molecular details of the individual components still need to be tweaked. The goal: very small differences in pH values between healthy and diseased tissue should be sufficient to switch the valves and release the drug only in diseased cells.

Citation: Jeffrey I. Zink, pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes, Angewandte Chemie International Edition 2008, 47, No. 12, 2222–2226, doi: 10.1002/anie.200705211

Source: Angewandte Chemie

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Germany's Bayer says will float chemicals division

1 hour ago

German chemicals and pharmaceuticals giant Bayer, maker of Aspirin painkiller, said on Thursday it intends to float its chemicals Material Science division to focus on its life sciences activities in human and animal health.

Scientists monitoring Hawaii lava undertake risks

1 hour ago

New photos from the U.S. Geological Survey's Hawaiian Volcano Observatory give a glimpse into the hazardous work scientists undertake to monitor lava that's threatening to cross a major highway.

Recommended for you

Twisted graphene chills out

23 hours ago

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

23 hours ago

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 0